
Role of Transport Layer
• Transport layer

• TCP

• UDP

• TCP/UDP port numbers

NetAcademy chapter 14.

Role of the Transport Layer

• Application layer programs generate data that must be exchanged
between source and destination hosts. The transport layer is
responsible for logical communications between applications
running on different hosts. This may include services such as
establishing a temporary session between two hosts and the reliable
transmission of information for an application.

• The transport layer has no knowledge of the destination host type,
the type of media over which the data must travel, the path taken by
the data, the congestion on a link, or the size of the network.

• The transport layer includes two protocols:

• Transmission Control Protocol (TCP)
• User Datagram Protocol (UDP)

Transport Layer Responsibilities

• At the transport layer, each set of data
flowing between a source application
and a destination application is known
as a conversation and is tracked
separately. It is the responsibility of the
transport layer to maintain and track
these multiple conversations.

• Most networks have a limitation on the
amount of data that can be included in a
single packet. Therefore, data must be
divided into manageable pieces.

Transport Layer Responsibilities

• Segmenting Data and Reassembling Segments
• It is the transport layer responsibility to divide

the application data into appropriately sized
blocks. Depending on the transport layer
protocol used, the transport layer blocks are
called either segments or datagrams. The
figure illustrates the transport layer using
different blocks for each conversation.

• The transport layer divides the data into
smaller blocks (i.e., segments or datagrams)
that are easier to manage and transport.

Transport Layer Responsibilities

• Add Header Information
• The transport layer protocol also adds header

information containing binary data organized into
several fields to each block of data. It is the values in
these fields that enable various transport layer
protocols to perform different functions in managing
data communication.

• For instance, the header information is used by the
receiving host to reassemble the blocks of data into a
complete data stream for the receiving application layer
program.

• The transport layer ensures that even with multiple
application running on a device, all applications receive
the correct data.

Transport Layer Responsibilities

• Identifying the Applications

• The transport layer must be able to separate and manage multiple communications with different transport
requirement needs. To pass data streams to the proper applications, the transport layer identifies the
target application using an identifier called a port number.

• As illustrated in the figure, each software process that needs to access the network is assigned a port
number unique to that host.

Transport Layer Responsibilities

• Conversation Multiplexing
• Sending some types of data (e.g., a streaming video) across a network, as one complete communication

stream, can consume all the available bandwidth. This would prevent other communication conversations
from occurring at the same time. It would also make error recovery and retransmission of damaged data
difficult.

• The transport layer uses segmentation and multiplexing to enable different communication conversations
to be interleaved on the same network.

• Error checking can be performed on the data in the segment, to determine if the segment was altered
during transmission.

Transport Layer Protocols

• IP is concerned only with the structure, addressing, and routing of packets. IP does not specify how the
delivery or transportation of the packets takes place.

• Transport layer protocols specify how to transfer messages between hosts, and are responsible for
managing reliability requirements of a conversation. The transport layer includes the TCP and UDP
protocols.

• Different applications have different transport reliability requirements. Therefore, TCP/IP provides two
transport layer protocols, as shown in the figure.

Transmission Control Protocol (TCP)

• IP is not responsible for guaranteeing delivery or determining whether a connection between the sender
and receiver needs to be established.

• TCP is considered a reliable, full-featured transport layer protocol, which ensures that all of the data arrives
at the destination. TCP includes fields which ensure the delivery of the application data. These fields
require additional processing by the sending and receiving hosts.

• TCP divides data into segments.
• TCP transport is analogous to sending packages that are tracked from source to destination. If a shipping

order is broken up into several packages, a customer can check online to see the order of the delivery.
• TCP provides reliability and flow control using these basic operations:

• Number and track data segments transmitted to a specific host from a specific application
• Acknowledge received data
• Retransmit any unacknowledged data after a certain amount of time
• Sequence data that might arrive in wrong order
• Send data at an efficient rate that is acceptable by the receiver
• In order to maintain the state of a conversation and track the information, TCP must first establish a

connection between the sender and the receiver. This is why TCP is known as a connection-oriented
protocol.

User Datagram Protocol (UDP)

• UDP is a simpler transport layer protocol than TCP. It does not provide reliability and flow control, which
means it requires fewer header fields. Because the sender and the receiver UDP processes do not have to
manage reliability and flow control, this means UDP datagrams can be processed faster than TCP segments.
UDP provides the basic functions for delivering datagrams between the appropriate applications, with very
little overhead and data checking.

• UDP divides data into datagrams that are also referred to as segments.
• UDP is a connectionless protocol. Because UDP does not provide reliability or flow control, it does not

require an established connection. Because UDP does not track information sent or received between the
client and server, UDP is also known as a stateless protocol.

• UDP is also known as a best-effort delivery protocol because there is no acknowledgment that the data is
received at the destination. With UDP, there are no transport layer processes that inform the sender of a
successful delivery.

• UDP is like placing a regular, nonregistered, letter in the mail. The sender of the letter is not aware of the
availability of the receiver to receive the letter. Nor is the post office responsible for tracking the letter or
informing the sender if the letter does not arrive at the final destination.

UDP vs TCP

• Some applications can tolerate some data loss during transmission over the network, but delays in
transmission are unacceptable. For these applications, UDP is the better choice because it requires less
network overhead. UDP is preferable for applications such as Voice over IP (VoIP). Acknowledgments and
retransmission would slow down delivery and make the voice conversation unacceptable.

• UDP is also used by request-and-reply applications where the data is minimal, and retransmission can be
done quickly. For example, Domain Name System (DNS) uses UDP for this type of transaction. The client
requests IPv4 and IPv6 addresses for a known domain name from a DNS server. If the client does not
receive a response in a predetermined amount of time, it simply sends the request again.

• For example, if one or two segments of a live video stream fail to arrive, it creates a momentary disruption
in the stream. This may appear as distortion in the image or sound, but may not be noticeable to the user. If
the destination device had to account for lost data, the stream could be delayed while waiting for
retransmissions, therefore causing the image or sound to be greatly degraded. In this case, it is better to
render the best media possible with the segments received, and forego reliability.

UDP vs TCP

• For other applications it is important that all the data arrives and that it can be processed in its proper sequence. For
these types of applications, TCP is used as the transport protocol. For example, applications such as databases, web
browsers, and email clients, require that all data that is sent arrives at the destination in its original condition. Any
missing data could corrupt a communication, making it either incomplete or unreadable. For example, it is important
when accessing banking information over the web to make sure all the information is sent and received correctly.

• Application developers must choose which transport protocol type is appropriate based on the requirements of the
applications. Video may be sent over TCP or UDP. Applications that stream stored audio and video typically use TCP. The
application uses TCP to perform buffering, bandwidth probing, and congestion control, in order to better control the
user experience.

• Real-time video and voice usually use UDP, but may also use TCP, or both UDP and TCP. A video conferencing
application may use UDP by default, but because many firewalls block UDP, the application can also be sent over TCP.

• Applications that stream stored audio and video use TCP. For example, if your network suddenly cannot support the
bandwidth needed to watch an on-demand movie, the application pauses the playback. During the pause, you might
see a “buffering...” message while TCP works to re-establish the stream. When all the segments are in order and a
minimum level of bandwidth is restored, your TCP session resumes, and the movie resumes playing.

UDP vs TCP

TCP Features

In addition to supporting the basic functions of data segmentation and reassembly, TCP also provides the following

services:

Establishes a Session - TCP is a connection-oriented protocol that negotiates and establishes a permanent

connection (or session) between source and destination devices prior to forwarding any traffic. Through session

establishment, the devices negotiate the amount of traffic that can be forwarded at a given time, and the

communication data between the two can be closely managed.

Ensures Reliable Delivery - For many reasons, it is possible for a segment to become corrupted or lost completely,

as it is transmitted over the network. TCP ensures that each segment that is sent by the source arrives at the

destination.

Provides Same-Order Delivery - Because networks may provide multiple routes that can have different transmission

rates, data can arrive in the wrong order. By numbering and sequencing the segments, TCP ensures segments are

reassembled into the proper order.

Supports Flow Control - Network hosts have limited resources (i.e., memory and processing power). When TCP is

aware that these resources are overtaxed, it can request that the sending application reduce the rate of data flow.

This is done by TCP regulating the amount of data the source transmits. Flow control can prevent the need for

retransmission of the data when the resources of the receiving host are overwhelmed.

TCP Header

TCP is a stateful protocol which means it keeps track of the state of the communication session. To track the state

of a session, TCP records which information it has sent and which information has been acknowledged. The stateful

session begins with the session establishment and ends with the session termination.

A TCP segment adds 20 bytes (i.e., 160 bits) of overhead when encapsulating the application layer data.

TCP Header Fields
TCP Header Field Description

Source Port A 16-bit field used to identify the source application by port number.

Destination Port A 16-bit field used to identify the destination application by port number.

Sequence Number A 32-bit field used for data reassembly purposes.

Acknowledgment Number
A 32-bit field used to indicate that data has been received and the next byte

expected from the source.

Header Length
A 4-bit field known as ʺdata offsetʺ that indicates the length of the TCP segment

header.

Reserved A 6-bit field that is reserved for future use.

Control bits
A 6-bit field that includes bit codes, or flags, which indicate the purpose and

function of the TCP segment.

Window size
A 16-bit field used to indicate the number of bytes that can be accepted at one

time.

Checksum A 16-bit field used for error checking of the segment header and data.

Urgent A 16-bit field used to indicate if the contained data is urgent.

Applications that use TCP

• TCP is a good example of how the different layers of the TCP/IP protocol suite have specific roles. TCP handles all tasks
associated with dividing the data stream into segments, providing reliability, controlling data flow, and reordering
segments.

• TCP frees the application from having to manage any of these tasks. Applications, like those shown in the figure, can
simply send the data stream to the transport layer and use the services of TCP.

UDP Features

• UDP features include the following:
• Data is reconstructed in the order that it is received.
• Any segments that are lost are not resent.
• There is no session establishment.
• The sending is not informed about resource availability.

• UDP is a stateless protocol, meaning neither the client, nor the server, tracks the state of the communication session. If
reliability is required when using UDP as the transport protocol, it must be handled by the application.

• One of the most important requirements for delivering live video and voice over the network is that the data continues to
flow quickly. Live video and voice applications can tolerate some data loss with minimal or no noticeable effect, and are
perfectly suited to UDP.

UDP Header Field Description

Source Port A 16-bit field used to identify the source application by port number.

Destination Port A 16-bit field used to identify the destination application by port number.

Length A 16-bit field that indicates the length of the UDP datagram header.

Checksum A 16-bit field used for error checking of the datagram header and data.

Applications that use UDP

• There are three types of applications that are best suited for UDP:
• Live video and multimedia applications - These applications can tolerate some data loss, but require little or no delay.

Examples include VoIP and live streaming video.
• Simple request and reply applications - Applications with simple transactions where a host sends a request and may

or may not receive a reply. Examples include DNS (Domain Name System/Service) and DHCP (Dynamic Host
configuration Protocol).

• Applications that handle reliability themselves - Unidirectional communications where flow control, error detection,
acknowledgments, and error recovery is not required, or can be handled by the application. Examples include SNMP
(Simple Network Management Protocol) and TFTP (Trivial File Transfer Protocol).

Although DNS and SNMP use UDP by default, both can also use TCP. DNS will use TCP if the DNS
request or DNS response is more than 512 bytes, such as when a DNS response includes many
name resolutions. Similarly, under some situations the network administrator may want to
configure SNMP to use TCP.

Port Numbers-Multiple Separate Communications

• No matter what type of data is being transported, both TCP and UDP use port numbers.
• The TCP and UDP transport layer protocols use port numbers to manage multiple, simultaneous conversations.
• The source port and destination port header fields are 2 bytes each

• The source port number is associated with the originating application on the local host whereas the destination port number is

associated with the destination application on the remote host.

• For instance, assume a host is initiating a web page request from a web server. When the host initiates the web page

request, the source port number is dynamically generated by the host to uniquely identify the conversation. Each request

generated by a host will use a different dynamically created source port number. This process allows multiple conversations

to occur simultaneously.

• In the request, the destination port number is what identifies the type of service being requested of the destination web

server.. For example, when a client specifies port 80 in the destination port, the server that receives the message knows that

web services are being requested.

• A server can offer more than one service simultaneously such as web services on port 80 while it offers File Transfer Protocol

(FTP) connection establishment on port 21.

Socket Pairs

• The source and destination ports are placed within the segment. The segments are then encapsulated within an IP packet.
The IP packet contains the IP address of the source and destination. The combination of the source IP address and source
port number, or the destination IP address and destination port number is known as a socket.

Socket Pairs

• In the example on the picture on the previous slide, the FTP request generated by the PC includes the Layer 2 MAC
addresses and the Layer 3 IP addresses. The request also identifies the source port number 1305 (i.e., dynamically
generated by the host) and destination port, identifying the FTP services on port 21. The host also has requested a web
page from the server using the same Layer 2 and Layer 3 addresses. However, it is using the source port number 1099
(i.e., dynamically generated by the host) and destination port identifying the web service on port 80.

• The socket is used to identify the server and service being requested by the client. A client socket might look like this, with
1099 representing the source port number: 192.168.1.5:1099, and the socket on a web server might be 192.168.1.7:80

• Together, these two sockets combine to form a socket pair: 192.168.1.5:1099, 192.168.1.7:80

• Sockets enable multiple processes, running on a client, to distinguish themselves from each other, and multiple
connections to a server process to be distinguished from each other.

• The source port number acts as a return address for the requesting application. The transport layer keeps track of this
port and the application that initiated the request so that when a response is returned, it can be forwarded to the correct
application.

Port Number Groups

• The Internet Assigned Numbers Authority (IANA) is the standards organization responsible for assigning various
addressing standards, including the 16-bit port numbers. The 16 bits used to identify the source and destination port
numbers provides a range of ports from 0 through 65535.

Port Group Number Range Description

Well-known Ports 0 to 1,023

•These port numbers are reserved for common or popular services and applications

such as web browsers, email clients, and remote access clients.

•Defined well-known ports for common server applications enables clients to easily

identify the associated service required.

Registered Ports 1,024 to 49,151

•These port numbers are assigned by IANA to a requesting entity to use with specific

processes or applications.

•These processes are primarily individual applications that a user has chosen to

install, rather than common applications that would receive a well-known port

number.

•For example, Cisco has registered port 1812 for its RADIUS server authentication

process.

Private and/or Dynamic

Ports
49,152 to 65,535

•These ports are also known as ephemeral ports.

•The client’s OS usually assign port numbers dynamically when a connection to a

service is initiated.

•The dynamic port is then used to identify the client application during

communication.

Well-Known Port Numbers
Port Number Protocol Application

20 TCP File Transfer Protocol (FTP) - Data

21 TCP File Transfer Protocol (FTP) - Control

22 TCP Secure Shell (SSH)

23 TCP Telnet

25 TCP Simple Mail Transfer Protocol (SMTP)

53 UDP, TCP Domain Name System (DNS)

67 UDP Dynamic Host Configuration Protocol (DHCP) - Server

68 UDP Dynamic Host Configuration Protocol - Client

69 UDP Trivial File Transfer Protocol (TFTP)

80 TCP Hypertext Transfer Protocol (HTTP)

110 TCP Post Office Protocol version 3 (POP3)

143 TCP Internet Message Access Protocol (IMAP)

161 UDP Simple Network Management Protocol (SNMP)

443 TCP Hypertext Transfer Protocol Secure (HTTPS)

Some applications may use both TCP and UDP. For example, DNS uses UDP when clients send requests to a DNS server. However,
communication between two DNS servers always uses TCP.

Well-Known Port Numbers

➢netstat
➢netstat -n

Unexplained TCP connections can pose a major security threat. They can indicate that something or someone is

connected to the local host. Sometimes it is necessary to know which active TCP connections are open and running

on a networked host. Netstat is an important network utility that can be used to verify those connections.
By default, the netstat command will attempt to resolve IP addresses to domain names and port numbers to well-known
applications. The -n option can be used to display IP addresses and port numbers in their numerical form.

TCP Communication Process
Each application process running on a server is configured to use a port number. The port number is either

automatically assigned or configured manually by a system administrator.

An individual server cannot have two services assigned to the same port number within the same transport layer

services. For example, a host running a web server application and a file transfer application cannot have both

configured to use the same port, such as TCP port 80.

An active server application assigned to a specific port is considered open, which means that the transport layer

accepts, and processes segments addressed to that port. Any incoming client request addressed to the correct

socket is accepted, and the data is passed to the server application. There can be many ports open simultaneously

on a server, one for each active server application.

TCP Connection Establishment and termination

three-way handshake process

TCP Connection Establishment and termination

Hosts maintain state, track each data segment within a session, and exchange information about what
data is received using the information in the TCP header. TCP is a full-duplex protocol, where each
connection represents two one-way communication sessions. To establish the connection, the hosts
perform a three-way handshake. Control bits in the TCP header indicate the progress and status of the
connection.

These are the functions of the three-way handshake:
•It establishes that the destination device is present on the network.
•It verifies that the destination device has an active service and is accepting requests on the
destination port number that the initiating client intends to use.
•It informs the destination device that the source client intends to establish a communication session
on that port number.

After the communication is completed the sessions are closed, and the connection is terminated. The
connection and session mechanisms enable TCP reliability function.

TCP Connection Establishment and termination

URG - Urgent pointer field significant
ACK - Acknowledgment flag used in connection establishment and session termination
PSH - Push function
RST - Reset the connection when an error or timeout occurs
SYN - Synchronize sequence numbers used in connection establishment
FIN - No more data from sender and used in session termination

TCP Connection Establishment and termination

three-way handshake process

Session termination
This ACK is for some of the previous segments

TCP Reliability - Guaranteed and Ordered Delivery

During session setup, an initial sequence number (ISN) is set. This ISN represents the starting value of the bytes that are
transmitted to the receiving application. As data is transmitted during the session, the sequence number is incremented
by the number of bytes that have been transmitted. This data byte tracking enables each segment to be uniquely
identified and acknowledged. Missing segments can then be identified.

TCP Reliability - Data Loss and Retransmission

No matter how well designed a network is, data loss occasionally occurs. TCP provides
methods of managing these segment losses. Among these is a mechanism to retransmit
segments for unacknowledged data.

The sequence (SEQ) number and acknowledgement (ACK) number are used together to
confirm receipt of the bytes of data contained in the transmitted segments.

The SEQ number identifies the first byte of data in the segment being transmitted.
TCP uses the ACK number sent back to the source to indicate the next byte that the
receiver expects to receive. This is called expectational acknowledgement.

TCP Reliability - Data Loss and Retransmission

• Prior to later enhancements, TCP could only
acknowledge the next byte expected.

• For example, host A sends segments 1 through 10 to host
B. If all the segments arrive except for segments 3 and 4,
host B would reply with acknowledgment specifying that
the next segment expected is segment 3.

• Host A has no idea if any other segments arrived or not.
Host A would, therefore, resend segments 3 through 10.

• If all the resent segments arrived successfully, segments
5 through 10 would be duplicates.

• This can lead to delays, congestion, and inefficiencies.

TCP Reliability - Data Loss and Retransmission

• Host operating systems today typically employ an optional
TCP feature called selective acknowledgment (SACK),
negotiated during the three-way handshake.

• If both hosts support SACK, the receiver can explicitly
acknowledge which segments (bytes) were received
including any discontinuous segments.

• The sending host would therefore only need to retransmit
the missing data.

• For example, in the next figure, again using segment
numbers for simplicity, host A sends segments 1 through 10
to host B. If all the segments arrive except for segments 3
and 4, host B can acknowledge that it has received
segments 1 and 2 (ACK 3), and selectively acknowledge
segments 5 through 10 (SACK 5-10). Host A would only need
to resend segments 3 and 4.

• TCP uses timers to know how long to wait before resending
a segment

TCP Flow Control - Window Size and Acknowledgments
• TCP also provides mechanisms for flow control. Flow control helps maintain the reliability of TCP transmission by

adjusting the rate of data flow between source and destination for a given session. To accomplish this, the TCP header
includes a 16-bit field called the window size.

• The window size determines the number of bytes that can be sent before expecting an acknowledgment.

• The window size is the number of bytes that the destination device of a TCP session can
accept and process at one time.

• In this example, the PC B initial window size for the TCP session is 10,000 bytes. Starting
with the first byte, byte number 1, the last byte PC A can send without receiving an
acknowledgment is byte 10,000. This is known as the send window of PC A. The window
size is included in every TCP segment so the destination can modify the window size at
any time depending on buffer availability.

• The initial window size is agreed upon when the TCP session is established during the
three-way handshake. The source device must limit the number of bytes sent to the
destination device based on the window size of the destination.

• Only after the source device receives an acknowledgment that the bytes have been
received, can it continue sending more data for the session.

• A destination sending acknowledgments as it processes bytes received, and the
continual adjustment of the source send window, is known as sliding windows.

TCP Flow Control - Maximum Segment Size (MSS)
• In the figure, the source is transmitting 1,460 bytes of data within each TCP segment. This is typically the Maximum

Segment Size (MSS) that the destination device can receive. The MSS is part of the options field in the TCP header that
specifies the largest amount of data, in bytes, that a device can receive in a single TCP segment. The MSS size does not
include the TCP header. The MSS is typically included during the three-way handshake.

• A common MSS is 1,460 bytes when using IPv4. A host determines the value of its MSS field by subtracting the IP and
TCP headers from the Ethernet maximum transmission unit (MTU). On an Ethernet interface, the default MTU is 1500
bytes. Subtracting the IPv4 header of 20 bytes and the TCP header of 20 bytes, the default MSS size will be 1460 bytes,
as shown in the figure.

TCP Flow Control - Congestion Avoidance
• When congestion occurs on a network, it results in packets being discarded by the overloaded router. When packets

containing TCP segments do not reach their destination, they are left unacknowledged. By determining the rate at which
TCP segments are sent but not acknowledged, the source can assume a certain level of network congestion.

• Whenever there is congestion, retransmission of lost TCP segments from the source will occur. If the retransmission is
not properly controlled, the additional retransmission of the TCP segments can make the congestion even worse. Not
only are new packets with TCP segments introduced into the network, but the feedback effect of the retransmitted TCP
segments that were lost will also add to the congestion. To avoid and control congestion, TCP employs several congestion
handling mechanisms, timers, and algorithms.

• If the source determines that the TCP segments are either not being acknowledged or not acknowledged in a timely
manner, then it can reduce the number of bytes it sends before receiving an acknowledgment. As illustrated in the
figure, PC A senses there is congestion and therefore, reduces the number of bytes it sends before receiving an
acknowledgment from PC B.

UDP Communication
• UDP does not establish a connection. UDP provides low

overhead data transport because it has a small datagram
header and no network management traffic

• Like segments with TCP, when UDP datagrams are sent to
a destination, they often take different paths and arrive
in the wrong order. UDP does not track sequence
numbers the way TCP does. UDP has no way to reorder
the datagrams into their transmission order

• Therefore, UDP simply reassembles the data in the order
that it was received and forwards it to the application. If
the data sequence is important to the application, the
application must identify the proper sequence and
determine how the data should be processed.

UDP Server and Client Processes and Requests
• Like TCP-based applications, UDP-based server applications

are assigned well-known or registered port numbers, as
shown in the figure. When these applications or processes are
running on a server, they accept the data matched with the
assigned port number. When UDP receives a datagram
destined for one of these ports, it forwards the application
data to the appropriate application based on its port number.

• As with TCP, client-server communication is initiated by a
client application that requests data from a server process.
The UDP client process dynamically selects a port number
from the range of port numbers and uses this as the source
port for the conversation. The destination port is usually the
well-known or registered port number assigned to the server
process.

• After a client has selected the source and destination ports,
the same pair of ports are used in the header of all datagrams
in the transaction. For the data returning to the client from
the server, the source and destination port numbers in the
datagram header are reversed.

?

	Slide 1: Role of Transport Layer
	Slide 2: Role of the Transport Layer
	Slide 3: Transport Layer Responsibilities
	Slide 4: Transport Layer Responsibilities
	Slide 5: Transport Layer Responsibilities
	Slide 6: Transport Layer Responsibilities
	Slide 7: Transport Layer Responsibilities
	Slide 8: Transport Layer Protocols
	Slide 9: Transmission Control Protocol (TCP)
	Slide 10: User Datagram Protocol (UDP)
	Slide 11: UDP vs TCP
	Slide 12: UDP vs TCP
	Slide 13: UDP vs TCP
	Slide 14: TCP Features
	Slide 15: TCP Header
	Slide 16: TCP Header Fields
	Slide 17: Applications that use TCP
	Slide 18: UDP Features
	Slide 19: Applications that use UDP
	Slide 20: Port Numbers-Multiple Separate Communications
	Slide 21: Socket Pairs
	Slide 22: Socket Pairs
	Slide 23: Port Number Groups
	Slide 24: Well-Known Port Numbers
	Slide 25: Well-Known Port Numbers
	Slide 26: TCP Communication Process
	Slide 27: TCP Connection Establishment and termination
	Slide 28: TCP Connection Establishment and termination
	Slide 29: TCP Connection Establishment and termination
	Slide 30: TCP Connection Establishment and termination
	Slide 31: TCP Reliability - Guaranteed and Ordered Delivery
	Slide 32: TCP Reliability - Data Loss and Retransmission
	Slide 33: TCP Reliability - Data Loss and Retransmission
	Slide 34: TCP Reliability - Data Loss and Retransmission
	Slide 35: TCP Flow Control - Window Size and Acknowledgments
	Slide 36: TCP Flow Control - Maximum Segment Size (MSS)
	Slide 37: TCP Flow Control - Congestion Avoidance
	Slide 38: UDP Communication
	Slide 39: UDP Server and Client Processes and Requests
	Slide 40

