### ADMINISTRACIJA OPERACIJSKIH SUSTAVA

### Umrežavanje II

## Lesson 1: Logical networking

- Creating a logical network
- Creating logical network sites and IP address pools
- Configuring uplink port profiles
- Configuring virtual port profiles
- Creating port classifications
- Relationship between port profiles and logical switches
- Implementing logical switch extensibility
- Configuring logical switches
- Integrating Top-of-Rack switches with VMM
- Deploying Network Controller
- Creating and configuring VM networks



## **Overview of logical networks**





## **Overview of logical networks**

- Logical networks are the parent object
- A logical network can have several logical network sites
- Each logical network can have multiple IP address pools





## **Overview of VLANs**





## **Overview of PVLANs**

A PVLAN has three modes:

- The Promiscuous mode can communicate with anything
- The isolated mode can communicate only with the Promiscuous mode
- The Community mode can communicate with the Community and Promiscuous modes





## **Overview of logical switches**





## **Overview of logical switches**





profiles

## **Overview of VM networks**





## **Overview of VM networks**



## Lesson 2: Managing Software-Defined Networking

- Creating a logical network
- Creating logical network sites and IP address pools
- Configuring uplink port profiles
- Configuring virtual port profiles
- Creating port classifications
- Relationship between port profiles and logical switches
- Implementing logical switch extensibility
- Configuring logical switches
- Integrating Top-of-Rack switches with VMM
- Deploying Network Controller
- Creating and configuring VM networks



## **Creating a logical network**





## Creating a logical network





# Creating logical network sites and IP address pools





# Creating logical network sites and IP address pools

Each logical network can have multiple logical network sites

Each logical network site must be associated with a host group (you cannot have more than one logical network site per host group per logical network)





## **Configuring uplink port profiles**





## **Configuring uplink port profiles**

- Uplink port profiles control the teaming method used
- They also control which logical network sites (and logical networks) are available





## **Configuring virtual port profiles**





## **Configuring virtual port profiles**

- What Hyper-V network adapter capabilities do you want included in the virtual port profile?
- Which bandwidth allocation mode do you want to specify?





## **Creating port classifications**





# Relationship between port profiles and logical switches





# Relationship between port profiles and logical switches

A logical switch can have multiple uplink port profiles and multiple port classifications (and each port classification can be associated with a virtual port profile)





# Implementing logical switch extensibility





### Implementing logical switch extensibility

- The Hyper-V switch is extensible and has three extension types: capturing, filtering, and forwarding
- A switch can only have one forwarding extension, but multiple filtering or capturing ones



## **Configuring logical switches**





## **Creating and configuring VM networks**





### **Configuring logical switches**





## Integrating Top-of-Rack switches with VMM

VMM can monitor connections between Hyper-V hosts and ToR switches. VMM can identify the switch configuration and evaluate whether the VMM logical switches will function as intended.





### **Overview of Hyper-V Network Virtualization**



#### Server virtualization

- Multiple VMs exist on the same physical server
- Each VM is isolated from the others

#### Network virtualization

- Multiple virtual networks exist on the same physical network
- Each virtual network is isolated from the others



### **Overview of Hyper-V Network Virtualization**

- Tenant networks are VM networks that exist inside a provider network
- Each tenant network is isolated from the others





## **Benefits of network virtualization**

- Flexible VM placement
- Multitenant network isolation without VLANs
- IP address reuse
- Live migration across subnets
- Compatibility with existing network infrastructures
- The transparent moving of VMs to a shared laaS cloud
- The ability to be configured by using Windows PowerShell



## **Network Controller overview**

#### Network controllers



**ALGEBRA** 

### How does network virtualization work?





#### Multitenant deployment of network virtualization

Define customer address-provider address mappings:

- You specify the Hyper-V server that the virtual machines are running on
- Hyper-V vSwitch applies policies by translating the incoming and outgoing packets
- If a VM is moved, policies are modified accordingly, but The VM configuration stays the same



## **Deploying Network Controller**

- 1. Create the management logical network
- 2. Create an IP address pool in the management logical network
- 3. Create a logical switch
- 4. Deploy the logical switch
- 5. Create an SSL certificate
- 6. Import the Network Controller template into the VMM library
- 7. Deploy the Network Controller VMM service
- 8. Add the Network Controller service to VMM



# Lesson 3: Understanding network function virtualization

- Understanding Software Load Balancing
- Understanding Windows Server Gateway
- Understanding Datacenter Firewall



# Understanding Software Load Balancing





# Understanding Software Load Balancing





## Understanding Windows Server Gateway





## **Understanding Windows Server Gateway**



## Understanding Windows Server Gateway





## **Understanding Datacenter Firewall**



### **Integrating IP Address Management and VMM**

IPAM tracks the IP address consumption and usage in both physical and virtual workloads





## Lesson 4: Overview of SDN

- What is SDN?
- Benefits of SDN
- Planning for SDN
- Deploying SDN by using scripts



## What is SDN?

- SDN enables you to:
  - Virtualize the network layer in a datacenter
  - Define polices for the physical and virtual networks
  - Manage the virtualized network infrastructure
- The SDN solution includes:
  - Network Controller
  - Hyper-V Network Virtualization
  - Hyper-V Virtual Switch
  - RRAS Multitenant Gateway
  - NIC Teaming
  - Operations Manager



## **Benefits of SDN**

- Challenges faced by many IT departments today include:
  - Resources are finite
  - Resources are inflexible
  - Mistakes are expensive
  - Networks are not always secure
- SDN overcomes these challenges and enables you to be:
  - Flexible
  - Efficient
  - Scalable



## **Planning for SDN**

You must plan the following aspects of your Software Defined Networking configuration:

- Management and HNV Provider logical networks
- Logical networks for gateways and the SLB
- Logical networks required for RDMA-based storage
- Routing infrastructure
- Default gateways
- Network hardware



## Planning for Software Defined Networkin Host 1 Host 2 Host 3







## **Deploying SDN by using scripts**

Use the following high-level procedure to deploy SDN:

- 1. Install host networking and validate the configuration
- 2. Run SDN Express scripts and validate setup
- 3. Deploy a sample tenant workload and validate deployment



# Lesson 5: Implementing network virtualization

- What is network virtualization?
- Benefits of network virtualization
- What is Generic Route Encapsulation?
- What are network virtualization policies?





Server virtualization:

- Multiple virtual machines on the same physical server
- Each virtual machine is
  isolated from others

Network virtualization:

- Multiple virtual networks on the same physical network
- Each virtual network is isolated from others



## **Benefits of network virtualization**

- Flexible virtual machine placement
- Multitenant network isolation without VLANs
- IP address reuse
- Live migration across subnets
- Compatibility with existing network infrastructure
- Transparent moving of virtual machines to a shared laaS cloud
- Support for resource metering
- Configuration by using Windows PowerShell or by using Virtual Machine Manager





- CA space is based on virtual machine configuration
- Provider address space is based on physical network and is not visible to the virtual machines



# What are network virtualization policies?

Define CA-PA mappings:

- Specify the Hyper-V server on which the virtual machines are running
- Hyper-V implements policies by translating incoming and outgoing packets
- If a virtual machine is moved, policies are modified, but the virtual machine configuration stays the same



## Hvala na pažnji!

