{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "8fdca690",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "0bf6d2e0",
"metadata": {},
"outputs": [],
"source": [
"proizvodi_baza = {\n",
" 'Naziv': [\n",
" 'Trek', 'Kona', 'Giant', \n",
" 'Bianchi', 'Cosmo Ride', 'Neon', \n",
" 'Zeeclo', 'Atomic', 'Head', \n",
" 'Elan', 'Salomon', 'Rossignol'\n",
" ],\n",
" 'Cijena': [\n",
" 7699.00, 4699.00, 5999.00, \n",
" 22499.00, 2599.00, 1999.00, \n",
" 2799.00, 1499.00, 1359.00, \n",
" 1499.00, 1699.00, 999.00\n",
" ],\n",
" 'Kategorija': [\n",
" 'Bicikl', 'Bicikl', 'Bicikl', \n",
" 'Bicikl', 'E-Romobil', 'E-Romobil',\n",
" 'E-Romobil', 'Skije', 'Skije', \n",
" 'Skije', 'Skije', 'Skije'\n",
" ],\n",
" 'Ocjena': [\n",
" 6.70, 6.50, 6.65, \n",
" 7.20, 8.64, 8.61, \n",
" 8.59, 7.99, 8.15,\n",
" 8.05, 7.91, 6.10\n",
" ]\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "f4ba0ad0",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Naziv | \n",
" Cijena | \n",
" Kategorija | \n",
" Ocjena | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Trek | \n",
" 7699.0 | \n",
" Bicikl | \n",
" 6.70 | \n",
"
\n",
" \n",
" 1 | \n",
" Kona | \n",
" 4699.0 | \n",
" Bicikl | \n",
" 6.50 | \n",
"
\n",
" \n",
" 2 | \n",
" Giant | \n",
" 5999.0 | \n",
" Bicikl | \n",
" 6.65 | \n",
"
\n",
" \n",
" 3 | \n",
" Bianchi | \n",
" 22499.0 | \n",
" Bicikl | \n",
" 7.20 | \n",
"
\n",
" \n",
" 4 | \n",
" Cosmo Ride | \n",
" 2599.0 | \n",
" E-Romobil | \n",
" 8.64 | \n",
"
\n",
" \n",
" 5 | \n",
" Neon | \n",
" 1999.0 | \n",
" E-Romobil | \n",
" 8.61 | \n",
"
\n",
" \n",
" 6 | \n",
" Zeeclo | \n",
" 2799.0 | \n",
" E-Romobil | \n",
" 8.59 | \n",
"
\n",
" \n",
" 7 | \n",
" Atomic | \n",
" 1499.0 | \n",
" Skije | \n",
" 7.99 | \n",
"
\n",
" \n",
" 8 | \n",
" Head | \n",
" 1359.0 | \n",
" Skije | \n",
" 8.15 | \n",
"
\n",
" \n",
" 9 | \n",
" Elan | \n",
" 1499.0 | \n",
" Skije | \n",
" 8.05 | \n",
"
\n",
" \n",
" 10 | \n",
" Salomon | \n",
" 1699.0 | \n",
" Skije | \n",
" 7.91 | \n",
"
\n",
" \n",
" 11 | \n",
" Rossignol | \n",
" 999.0 | \n",
" Skije | \n",
" 6.10 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Naziv Cijena Kategorija Ocjena\n",
"0 Trek 7699.0 Bicikl 6.70\n",
"1 Kona 4699.0 Bicikl 6.50\n",
"2 Giant 5999.0 Bicikl 6.65\n",
"3 Bianchi 22499.0 Bicikl 7.20\n",
"4 Cosmo Ride 2599.0 E-Romobil 8.64\n",
"5 Neon 1999.0 E-Romobil 8.61\n",
"6 Zeeclo 2799.0 E-Romobil 8.59\n",
"7 Atomic 1499.0 Skije 7.99\n",
"8 Head 1359.0 Skije 8.15\n",
"9 Elan 1499.0 Skije 8.05\n",
"10 Salomon 1699.0 Skije 7.91\n",
"11 Rossignol 999.0 Skije 6.10"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"proizvodi_svi = pd.DataFrame(proizvodi_baza)\n",
"proizvodi_svi"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "1b6879e8",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Naziv | \n",
" Cijena | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Trek | \n",
" 7699.0 | \n",
"
\n",
" \n",
" 1 | \n",
" Kona | \n",
" 4699.0 | \n",
"
\n",
" \n",
" 2 | \n",
" Giant | \n",
" 5999.0 | \n",
"
\n",
" \n",
" 3 | \n",
" Bianchi | \n",
" 22499.0 | \n",
"
\n",
" \n",
" 4 | \n",
" Cosmo Ride | \n",
" 2599.0 | \n",
"
\n",
" \n",
" 5 | \n",
" Neon | \n",
" 1999.0 | \n",
"
\n",
" \n",
" 6 | \n",
" Zeeclo | \n",
" 2799.0 | \n",
"
\n",
" \n",
" 7 | \n",
" Atomic | \n",
" 1499.0 | \n",
"
\n",
" \n",
" 8 | \n",
" Head | \n",
" 1359.0 | \n",
"
\n",
" \n",
" 9 | \n",
" Elan | \n",
" 1499.0 | \n",
"
\n",
" \n",
" 10 | \n",
" Salomon | \n",
" 1699.0 | \n",
"
\n",
" \n",
" 11 | \n",
" Rossignol | \n",
" 999.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Naziv Cijena\n",
"0 Trek 7699.0\n",
"1 Kona 4699.0\n",
"2 Giant 5999.0\n",
"3 Bianchi 22499.0\n",
"4 Cosmo Ride 2599.0\n",
"5 Neon 1999.0\n",
"6 Zeeclo 2799.0\n",
"7 Atomic 1499.0\n",
"8 Head 1359.0\n",
"9 Elan 1499.0\n",
"10 Salomon 1699.0\n",
"11 Rossignol 999.0"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"proizvodi_dio = pd.DataFrame(proizvodi_baza, columns=['Naziv','Cijena'])\n",
"proizvodi_dio"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "fb4af5ea",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['Naziv', 'Cijena', 'Kategorija', 'Ocjena'], dtype='object')"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"proizvodi_svi.columns"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6f705122",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['Naziv', 'Cijena'], dtype='object')"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"proizvodi_dio.columns"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "9da6442e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([['Trek', 7699.0, 'Bicikl', 6.7],\n",
" ['Kona', 4699.0, 'Bicikl', 6.5],\n",
" ['Giant', 5999.0, 'Bicikl', 6.65],\n",
" ['Bianchi', 22499.0, 'Bicikl', 7.2],\n",
" ['Cosmo Ride', 2599.0, 'E-Romobil', 8.64],\n",
" ['Neon', 1999.0, 'E-Romobil', 8.61],\n",
" ['Zeeclo', 2799.0, 'E-Romobil', 8.59],\n",
" ['Atomic', 1499.0, 'Skije', 7.99],\n",
" ['Head', 1359.0, 'Skije', 8.15],\n",
" ['Elan', 1499.0, 'Skije', 8.05],\n",
" ['Salomon', 1699.0, 'Skije', 7.91],\n",
" ['Rossignol', 999.0, 'Skije', 6.1]], dtype=object)"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"proizvodi_svi.values"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "08b27c02",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['Trek', 7699.0, 'Bicikl', 6.7], dtype=object)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"proizvodi_svi.values[0]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "4659a30b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"7699.0"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"proizvodi_svi.values[0][1]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "98c0c56b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"RangeIndex(start=0, stop=12, step=1)"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"proizvodi_svi.index"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "9ffe2239",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Naziv | \n",
" Cijena | \n",
" Kategorija | \n",
" Ocjena | \n",
"
\n",
" \n",
" Rbr | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Trek | \n",
" 7699.0 | \n",
" Bicikl | \n",
" 6.70 | \n",
"
\n",
" \n",
" 1 | \n",
" Kona | \n",
" 4699.0 | \n",
" Bicikl | \n",
" 6.50 | \n",
"
\n",
" \n",
" 2 | \n",
" Giant | \n",
" 5999.0 | \n",
" Bicikl | \n",
" 6.65 | \n",
"
\n",
" \n",
" 3 | \n",
" Bianchi | \n",
" 22499.0 | \n",
" Bicikl | \n",
" 7.20 | \n",
"
\n",
" \n",
" 4 | \n",
" Cosmo Ride | \n",
" 2599.0 | \n",
" E-Romobil | \n",
" 8.64 | \n",
"
\n",
" \n",
" 5 | \n",
" Neon | \n",
" 1999.0 | \n",
" E-Romobil | \n",
" 8.61 | \n",
"
\n",
" \n",
" 6 | \n",
" Zeeclo | \n",
" 2799.0 | \n",
" E-Romobil | \n",
" 8.59 | \n",
"
\n",
" \n",
" 7 | \n",
" Atomic | \n",
" 1499.0 | \n",
" Skije | \n",
" 7.99 | \n",
"
\n",
" \n",
" 8 | \n",
" Head | \n",
" 1359.0 | \n",
" Skije | \n",
" 8.15 | \n",
"
\n",
" \n",
" 9 | \n",
" Elan | \n",
" 1499.0 | \n",
" Skije | \n",
" 8.05 | \n",
"
\n",
" \n",
" 10 | \n",
" Salomon | \n",
" 1699.0 | \n",
" Skije | \n",
" 7.91 | \n",
"
\n",
" \n",
" 11 | \n",
" Rossignol | \n",
" 999.0 | \n",
" Skije | \n",
" 6.10 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Naziv Cijena Kategorija Ocjena\n",
"Rbr \n",
"0 Trek 7699.0 Bicikl 6.70\n",
"1 Kona 4699.0 Bicikl 6.50\n",
"2 Giant 5999.0 Bicikl 6.65\n",
"3 Bianchi 22499.0 Bicikl 7.20\n",
"4 Cosmo Ride 2599.0 E-Romobil 8.64\n",
"5 Neon 1999.0 E-Romobil 8.61\n",
"6 Zeeclo 2799.0 E-Romobil 8.59\n",
"7 Atomic 1499.0 Skije 7.99\n",
"8 Head 1359.0 Skije 8.15\n",
"9 Elan 1499.0 Skije 8.05\n",
"10 Salomon 1699.0 Skije 7.91\n",
"11 Rossignol 999.0 Skije 6.10"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"proizvodi_svi.index.name='Rbr'\n",
"proizvodi_svi"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "2fbfd0af",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Rbr\n",
"0 6.70\n",
"1 6.50\n",
"2 6.65\n",
"3 7.20\n",
"4 8.64\n",
"5 8.61\n",
"6 8.59\n",
"7 7.99\n",
"8 8.15\n",
"9 8.05\n",
"10 7.91\n",
"11 6.10\n",
"Name: Ocjena, dtype: float64"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"proizvodi_svi['Ocjena']"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "659e47a5",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Car | \n",
" MPG | \n",
" Cylinders | \n",
" Displacement | \n",
" Horsepower | \n",
" Weight | \n",
" Acceleration | \n",
" Model | \n",
" Origin | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" STRING | \n",
" DOUBLE | \n",
" INT | \n",
" DOUBLE | \n",
" DOUBLE | \n",
" DOUBLE | \n",
" DOUBLE | \n",
" INT | \n",
" CAT | \n",
"
\n",
" \n",
" 1 | \n",
" Chevrolet Chevelle Malibu | \n",
" 18.0 | \n",
" 8 | \n",
" 307.0 | \n",
" 130.0 | \n",
" 3504. | \n",
" 12.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 2 | \n",
" Buick Skylark 320 | \n",
" 15.0 | \n",
" 8 | \n",
" 350.0 | \n",
" 165.0 | \n",
" 3693. | \n",
" 11.5 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 3 | \n",
" Plymouth Satellite | \n",
" 18.0 | \n",
" 8 | \n",
" 318.0 | \n",
" 150.0 | \n",
" 3436. | \n",
" 11.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 4 | \n",
" AMC Rebel SST | \n",
" 16.0 | \n",
" 8 | \n",
" 304.0 | \n",
" 150.0 | \n",
" 3433. | \n",
" 12.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 402 | \n",
" Ford Mustang GL | \n",
" 27.0 | \n",
" 4 | \n",
" 140.0 | \n",
" 86.00 | \n",
" 2790. | \n",
" 15.6 | \n",
" 82 | \n",
" US | \n",
"
\n",
" \n",
" 403 | \n",
" Volkswagen Pickup | \n",
" 44.0 | \n",
" 4 | \n",
" 97.00 | \n",
" 52.00 | \n",
" 2130. | \n",
" 24.6 | \n",
" 82 | \n",
" Europe | \n",
"
\n",
" \n",
" 404 | \n",
" Dodge Rampage | \n",
" 32.0 | \n",
" 4 | \n",
" 135.0 | \n",
" 84.00 | \n",
" 2295. | \n",
" 11.6 | \n",
" 82 | \n",
" US | \n",
"
\n",
" \n",
" 405 | \n",
" Ford Ranger | \n",
" 28.0 | \n",
" 4 | \n",
" 120.0 | \n",
" 79.00 | \n",
" 2625. | \n",
" 18.6 | \n",
" 82 | \n",
" US | \n",
"
\n",
" \n",
" 406 | \n",
" Chevy S-10 | \n",
" 31.0 | \n",
" 4 | \n",
" 119.0 | \n",
" 82.00 | \n",
" 2720. | \n",
" 19.4 | \n",
" 82 | \n",
" US | \n",
"
\n",
" \n",
"
\n",
"
407 rows × 9 columns
\n",
"
"
],
"text/plain": [
" Car MPG Cylinders Displacement Horsepower \\\n",
"0 STRING DOUBLE INT DOUBLE DOUBLE \n",
"1 Chevrolet Chevelle Malibu 18.0 8 307.0 130.0 \n",
"2 Buick Skylark 320 15.0 8 350.0 165.0 \n",
"3 Plymouth Satellite 18.0 8 318.0 150.0 \n",
"4 AMC Rebel SST 16.0 8 304.0 150.0 \n",
".. ... ... ... ... ... \n",
"402 Ford Mustang GL 27.0 4 140.0 86.00 \n",
"403 Volkswagen Pickup 44.0 4 97.00 52.00 \n",
"404 Dodge Rampage 32.0 4 135.0 84.00 \n",
"405 Ford Ranger 28.0 4 120.0 79.00 \n",
"406 Chevy S-10 31.0 4 119.0 82.00 \n",
"\n",
" Weight Acceleration Model Origin \n",
"0 DOUBLE DOUBLE INT CAT \n",
"1 3504. 12.0 70 US \n",
"2 3693. 11.5 70 US \n",
"3 3436. 11.0 70 US \n",
"4 3433. 12.0 70 US \n",
".. ... ... ... ... \n",
"402 2790. 15.6 82 US \n",
"403 2130. 24.6 82 Europe \n",
"404 2295. 11.6 82 US \n",
"405 2625. 18.6 82 US \n",
"406 2720. 19.4 82 US \n",
"\n",
"[407 rows x 9 columns]"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_csv = pd.read_csv('cars.csv', sep=';')\n",
"cars_csv"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "c7892157",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['Car', 'MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight',\n",
" 'Acceleration', 'Model', 'Origin'],\n",
" dtype='object')"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_csv.columns"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "1bf31a8b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([['STRING', 'DOUBLE', 'INT', ..., 'DOUBLE', 'INT', 'CAT'],\n",
" ['Chevrolet Chevelle Malibu', '18.0', '8', ..., '12.0', '70',\n",
" 'US'],\n",
" ['Buick Skylark 320', '15.0', '8', ..., '11.5', '70', 'US'],\n",
" ...,\n",
" ['Dodge Rampage', '32.0', '4', ..., '11.6', '82', 'US'],\n",
" ['Ford Ranger', '28.0', '4', ..., '18.6', '82', 'US'],\n",
" ['Chevy S-10', '31.0', '4', ..., '19.4', '82', 'US']], dtype=object)"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_csv.values"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "46bd6b1c",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" YEAR | \n",
" Make | \n",
" Model | \n",
" Size | \n",
" (kW) | \n",
" Unnamed: 5 | \n",
" TYPE | \n",
" CITY (kWh/100 km) | \n",
" HWY (kWh/100 km) | \n",
" COMB (kWh/100 km) | \n",
" CITY (Le/100 km) | \n",
" HWY (Le/100 km) | \n",
" COMB (Le/100 km) | \n",
" (g/km) | \n",
" RATING | \n",
" (km) | \n",
" TIME (h) | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2012 | \n",
" MITSUBISHI | \n",
" i-MiEV | \n",
" SUBCOMPACT | \n",
" 49 | \n",
" A1 | \n",
" B | \n",
" 16.9 | \n",
" 21.4 | \n",
" 18.7 | \n",
" 1.9 | \n",
" 2.4 | \n",
" 2.1 | \n",
" 0 | \n",
" NaN | \n",
" 100 | \n",
" 7 | \n",
"
\n",
" \n",
" 1 | \n",
" 2012 | \n",
" NISSAN | \n",
" LEAF | \n",
" MID-SIZE | \n",
" 80 | \n",
" A1 | \n",
" B | \n",
" 19.3 | \n",
" 23.0 | \n",
" 21.1 | \n",
" 2.2 | \n",
" 2.6 | \n",
" 2.4 | \n",
" 0 | \n",
" NaN | \n",
" 117 | \n",
" 7 | \n",
"
\n",
" \n",
" 2 | \n",
" 2013 | \n",
" FORD | \n",
" FOCUS ELECTRIC | \n",
" COMPACT | \n",
" 107 | \n",
" A1 | \n",
" B | \n",
" 19.0 | \n",
" 21.1 | \n",
" 20.0 | \n",
" 2.1 | \n",
" 2.4 | \n",
" 2.2 | \n",
" 0 | \n",
" NaN | \n",
" 122 | \n",
" 4 | \n",
"
\n",
" \n",
" 3 | \n",
" 2013 | \n",
" MITSUBISHI | \n",
" i-MiEV | \n",
" SUBCOMPACT | \n",
" 49 | \n",
" A1 | \n",
" B | \n",
" 16.9 | \n",
" 21.4 | \n",
" 18.7 | \n",
" 1.9 | \n",
" 2.4 | \n",
" 2.1 | \n",
" 0 | \n",
" NaN | \n",
" 100 | \n",
" 7 | \n",
"
\n",
" \n",
" 4 | \n",
" 2013 | \n",
" NISSAN | \n",
" LEAF | \n",
" MID-SIZE | \n",
" 80 | \n",
" A1 | \n",
" B | \n",
" 19.3 | \n",
" 23.0 | \n",
" 21.1 | \n",
" 2.2 | \n",
" 2.6 | \n",
" 2.4 | \n",
" 0 | \n",
" NaN | \n",
" 117 | \n",
" 7 | \n",
"
\n",
" \n",
" 5 | \n",
" 2013 | \n",
" SMART | \n",
" FORTWO ELECTRIC DRIVE CABRIOLET | \n",
" TWO-SEATER | \n",
" 35 | \n",
" A1 | \n",
" B | \n",
" 17.2 | \n",
" 22.5 | \n",
" 19.6 | \n",
" 1.9 | \n",
" 2.5 | \n",
" 2.2 | \n",
" 0 | \n",
" NaN | \n",
" 109 | \n",
" 8 | \n",
"
\n",
" \n",
" 6 | \n",
" 2013 | \n",
" SMART | \n",
" FORTWO ELECTRIC DRIVE COUPE | \n",
" TWO-SEATER | \n",
" 35 | \n",
" A1 | \n",
" B | \n",
" 17.2 | \n",
" 22.5 | \n",
" 19.6 | \n",
" 1.9 | \n",
" 2.5 | \n",
" 2.2 | \n",
" 0 | \n",
" NaN | \n",
" 109 | \n",
" 8 | \n",
"
\n",
" \n",
" 7 | \n",
" 2013 | \n",
" TESLA | \n",
" MODEL S (40 kWh battery) | \n",
" FULL-SIZE | \n",
" 270 | \n",
" A1 | \n",
" B | \n",
" 22.4 | \n",
" 21.9 | \n",
" 22.2 | \n",
" 2.5 | \n",
" 2.5 | \n",
" 2.5 | \n",
" 0 | \n",
" NaN | \n",
" 224 | \n",
" 6 | \n",
"
\n",
" \n",
" 8 | \n",
" 2013 | \n",
" TESLA | \n",
" MODEL S (60 kWh battery) | \n",
" FULL-SIZE | \n",
" 270 | \n",
" A1 | \n",
" B | \n",
" 22.2 | \n",
" 21.7 | \n",
" 21.9 | \n",
" 2.5 | \n",
" 2.4 | \n",
" 2.5 | \n",
" 0 | \n",
" NaN | \n",
" 335 | \n",
" 10 | \n",
"
\n",
" \n",
" 9 | \n",
" 2013 | \n",
" TESLA | \n",
" MODEL S (85 kWh battery) | \n",
" FULL-SIZE | \n",
" 270 | \n",
" A1 | \n",
" B | \n",
" 23.8 | \n",
" 23.2 | \n",
" 23.6 | \n",
" 2.7 | \n",
" 2.6 | \n",
" 2.6 | \n",
" 0 | \n",
" NaN | \n",
" 426 | \n",
" 12 | \n",
"
\n",
" \n",
" 10 | \n",
" 2013 | \n",
" TESLA | \n",
" MODEL S PERFORMANCE | \n",
" FULL-SIZE | \n",
" 310 | \n",
" A1 | \n",
" B | \n",
" 23.9 | \n",
" 23.2 | \n",
" 23.6 | \n",
" 2.7 | \n",
" 2.6 | \n",
" 2.6 | \n",
" 0 | \n",
" NaN | \n",
" 426 | \n",
" 12 | \n",
"
\n",
" \n",
" 11 | \n",
" 2014 | \n",
" CHEVROLET | \n",
" SPARK EV | \n",
" SUBCOMPACT | \n",
" 104 | \n",
" A1 | \n",
" B | \n",
" 16.0 | \n",
" 19.6 | \n",
" 17.8 | \n",
" 1.8 | \n",
" 2.2 | \n",
" 2.0 | \n",
" 0 | \n",
" NaN | \n",
" 131 | \n",
" 7 | \n",
"
\n",
" \n",
" 12 | \n",
" 2014 | \n",
" FORD | \n",
" FOCUS ELECTRIC | \n",
" COMPACT | \n",
" 107 | \n",
" A1 | \n",
" B | \n",
" 19.0 | \n",
" 21.1 | \n",
" 20.0 | \n",
" 2.1 | \n",
" 2.4 | \n",
" 2.2 | \n",
" 0 | \n",
" NaN | \n",
" 122 | \n",
" 4 | \n",
"
\n",
" \n",
" 13 | \n",
" 2014 | \n",
" MITSUBISHI | \n",
" i-MiEV | \n",
" SUBCOMPACT | \n",
" 49 | \n",
" A1 | \n",
" B | \n",
" 16.9 | \n",
" 21.4 | \n",
" 18.7 | \n",
" 1.9 | \n",
" 2.4 | \n",
" 2.1 | \n",
" 0 | \n",
" NaN | \n",
" 100 | \n",
" 7 | \n",
"
\n",
" \n",
" 14 | \n",
" 2014 | \n",
" NISSAN | \n",
" LEAF | \n",
" MID-SIZE | \n",
" 80 | \n",
" A1 | \n",
" B | \n",
" 16.5 | \n",
" 20.8 | \n",
" 18.4 | \n",
" 1.9 | \n",
" 2.3 | \n",
" 2.1 | \n",
" 0 | \n",
" NaN | \n",
" 135 | \n",
" 5 | \n",
"
\n",
" \n",
" 15 | \n",
" 2014 | \n",
" SMART | \n",
" FORTWO ELECTRIC DRIVE CABRIOLET | \n",
" TWO-SEATER | \n",
" 35 | \n",
" A1 | \n",
" B | \n",
" 17.2 | \n",
" 22.5 | \n",
" 19.6 | \n",
" 1.9 | \n",
" 2.5 | \n",
" 2.2 | \n",
" 0 | \n",
" NaN | \n",
" 109 | \n",
" 8 | \n",
"
\n",
" \n",
" 16 | \n",
" 2014 | \n",
" SMART | \n",
" FORTWO ELECTRIC DRIVE COUPE | \n",
" TWO-SEATER | \n",
" 35 | \n",
" A1 | \n",
" B | \n",
" 17.2 | \n",
" 22.5 | \n",
" 19.6 | \n",
" 1.9 | \n",
" 2.5 | \n",
" 2.2 | \n",
" 0 | \n",
" NaN | \n",
" 109 | \n",
" 8 | \n",
"
\n",
" \n",
" 17 | \n",
" 2014 | \n",
" TESLA | \n",
" MODEL S (60 kWh battery) | \n",
" FULL-SIZE | \n",
" 225 | \n",
" A1 | \n",
" B | \n",
" 22.2 | \n",
" 21.7 | \n",
" 21.9 | \n",
" 2.5 | \n",
" 2.4 | \n",
" 2.5 | \n",
" 0 | \n",
" NaN | \n",
" 335 | \n",
" 10 | \n",
"
\n",
" \n",
" 18 | \n",
" 2014 | \n",
" TESLA | \n",
" MODEL S (85 kWh battery) | \n",
" FULL-SIZE | \n",
" 270 | \n",
" A1 | \n",
" B | \n",
" 23.8 | \n",
" 23.2 | \n",
" 23.6 | \n",
" 2.7 | \n",
" 2.6 | \n",
" 2.6 | \n",
" 0 | \n",
" NaN | \n",
" 426 | \n",
" 12 | \n",
"
\n",
" \n",
" 19 | \n",
" 2014 | \n",
" TESLA | \n",
" MODEL S PERFORMANCE | \n",
" FULL-SIZE | \n",
" 310 | \n",
" A1 | \n",
" B | \n",
" 23.9 | \n",
" 23.2 | \n",
" 23.6 | \n",
" 2.7 | \n",
" 2.6 | \n",
" 2.6 | \n",
" 0 | \n",
" NaN | \n",
" 426 | \n",
" 12 | \n",
"
\n",
" \n",
" 20 | \n",
" 2015 | \n",
" BMW | \n",
" i3 | \n",
" SUBCOMPACT | \n",
" 125 | \n",
" A1 | \n",
" B | \n",
" 15.2 | \n",
" 18.8 | \n",
" 16.8 | \n",
" 1.7 | \n",
" 2.1 | \n",
" 1.9 | \n",
" 0 | \n",
" NaN | \n",
" 130 | \n",
" 4 | \n",
"
\n",
" \n",
" 21 | \n",
" 2015 | \n",
" CHEVROLET | \n",
" SPARK EV | \n",
" SUBCOMPACT | \n",
" 104 | \n",
" A1 | \n",
" B | \n",
" 16.0 | \n",
" 19.6 | \n",
" 17.8 | \n",
" 1.8 | \n",
" 2.2 | \n",
" 2.0 | \n",
" 0 | \n",
" NaN | \n",
" 131 | \n",
" 7 | \n",
"
\n",
" \n",
" 22 | \n",
" 2015 | \n",
" FORD | \n",
" FOCUS ELECTRIC | \n",
" COMPACT | \n",
" 107 | \n",
" A1 | \n",
" B | \n",
" 19.0 | \n",
" 21.1 | \n",
" 20.0 | \n",
" 2.1 | \n",
" 2.4 | \n",
" 2.2 | \n",
" 0 | \n",
" NaN | \n",
" 122 | \n",
" 4 | \n",
"
\n",
" \n",
" 23 | \n",
" 2015 | \n",
" KIA | \n",
" SOUL EV | \n",
" STATION WAGON - SMALL | \n",
" 81 | \n",
" A1 | \n",
" B | \n",
" 17.5 | \n",
" 22.7 | \n",
" 19.9 | \n",
" 2.0 | \n",
" 2.6 | \n",
" 2.2 | \n",
" 0 | \n",
" NaN | \n",
" 149 | \n",
" 4 | \n",
"
\n",
" \n",
" 24 | \n",
" 2015 | \n",
" MITSUBISHI | \n",
" i-MiEV | \n",
" SUBCOMPACT | \n",
" 49 | \n",
" A1 | \n",
" B | \n",
" 16.9 | \n",
" 21.4 | \n",
" 18.7 | \n",
" 1.9 | \n",
" 2.4 | \n",
" 2.1 | \n",
" 0 | \n",
" NaN | \n",
" 100 | \n",
" 7 | \n",
"
\n",
" \n",
" 25 | \n",
" 2015 | \n",
" NISSAN | \n",
" LEAF | \n",
" MID-SIZE | \n",
" 80 | \n",
" A1 | \n",
" B | \n",
" 16.5 | \n",
" 20.8 | \n",
" 18.4 | \n",
" 1.9 | \n",
" 2.3 | \n",
" 2.1 | \n",
" 0 | \n",
" NaN | \n",
" 135 | \n",
" 5 | \n",
"
\n",
" \n",
" 26 | \n",
" 2015 | \n",
" SMART | \n",
" FORTWO ELECTRIC DRIVE CABRIOLET | \n",
" TWO-SEATER | \n",
" 35 | \n",
" A1 | \n",
" B | \n",
" 17.2 | \n",
" 22.5 | \n",
" 19.6 | \n",
" 1.9 | \n",
" 2.5 | \n",
" 2.2 | \n",
" 0 | \n",
" NaN | \n",
" 109 | \n",
" 8 | \n",
"
\n",
" \n",
" 27 | \n",
" 2015 | \n",
" SMART | \n",
" FORTWO ELECTRIC DRIVE COUPE | \n",
" TWO-SEATER | \n",
" 35 | \n",
" A1 | \n",
" B | \n",
" 17.2 | \n",
" 22.5 | \n",
" 19.6 | \n",
" 1.9 | \n",
" 2.5 | \n",
" 2.2 | \n",
" 0 | \n",
" NaN | \n",
" 109 | \n",
" 8 | \n",
"
\n",
" \n",
" 28 | \n",
" 2015 | \n",
" TESLA | \n",
" MODEL S (60 kWh battery) | \n",
" FULL-SIZE | \n",
" 283 | \n",
" A1 | \n",
" B | \n",
" 22.2 | \n",
" 21.7 | \n",
" 21.9 | \n",
" 2.5 | \n",
" 2.4 | \n",
" 2.5 | \n",
" 0 | \n",
" NaN | \n",
" 335 | \n",
" 10 | \n",
"
\n",
" \n",
" 29 | \n",
" 2015 | \n",
" TESLA | \n",
" MODEL S (70 kWh battery) | \n",
" FULL-SIZE | \n",
" 283 | \n",
" A1 | \n",
" B | \n",
" 23.8 | \n",
" 23.2 | \n",
" 23.6 | \n",
" 2.7 | \n",
" 2.6 | \n",
" 2.6 | \n",
" 0 | \n",
" NaN | \n",
" 377 | \n",
" 12 | \n",
"
\n",
" \n",
" 30 | \n",
" 2015 | \n",
" TESLA | \n",
" MODEL S (85/90 kWh battery) | \n",
" FULL-SIZE | \n",
" 283 | \n",
" A1 | \n",
" B | \n",
" 23.8 | \n",
" 23.2 | \n",
" 23.6 | \n",
" 2.7 | \n",
" 2.6 | \n",
" 2.6 | \n",
" 0 | \n",
" NaN | \n",
" 426 | \n",
" 12 | \n",
"
\n",
" \n",
" 31 | \n",
" 2015 | \n",
" TESLA | \n",
" MODEL S 70D | \n",
" FULL-SIZE | \n",
" 280 | \n",
" A1 | \n",
" B | \n",
" 20.8 | \n",
" 20.6 | \n",
" 20.7 | \n",
" 2.3 | \n",
" 2.3 | \n",
" 2.3 | \n",
" 0 | \n",
" NaN | \n",
" 386 | \n",
" 12 | \n",
"
\n",
" \n",
" 32 | \n",
" 2015 | \n",
" TESLA | \n",
" MODEL S 85D/90D | \n",
" FULL-SIZE | \n",
" 280 | \n",
" A1 | \n",
" B | \n",
" 22.0 | \n",
" 19.8 | \n",
" 21.0 | \n",
" 2.5 | \n",
" 2.2 | \n",
" 2.4 | \n",
" 0 | \n",
" NaN | \n",
" 435 | \n",
" 12 | \n",
"
\n",
" \n",
" 33 | \n",
" 2015 | \n",
" TESLA | \n",
" MODEL S P85D/P90D | \n",
" FULL-SIZE | \n",
" 515 | \n",
" A1 | \n",
" B | \n",
" 23.4 | \n",
" 21.5 | \n",
" 22.5 | \n",
" 2.6 | \n",
" 2.4 | \n",
" 2.5 | \n",
" 0 | \n",
" NaN | \n",
" 407 | \n",
" 12 | \n",
"
\n",
" \n",
" 34 | \n",
" 2016 | \n",
" BMW | \n",
" i3 | \n",
" SUBCOMPACT | \n",
" 125 | \n",
" A1 | \n",
" B | \n",
" 15.2 | \n",
" 18.8 | \n",
" 16.8 | \n",
" 1.7 | \n",
" 2.1 | \n",
" 1.9 | \n",
" 0 | \n",
" 10.0 | \n",
" 130 | \n",
" 4 | \n",
"
\n",
" \n",
" 35 | \n",
" 2016 | \n",
" CHEVROLET | \n",
" SPARK EV | \n",
" SUBCOMPACT | \n",
" 104 | \n",
" A1 | \n",
" B | \n",
" 16.0 | \n",
" 19.6 | \n",
" 17.8 | \n",
" 1.8 | \n",
" 2.2 | \n",
" 2.0 | \n",
" 0 | \n",
" 10.0 | \n",
" 131 | \n",
" 7 | \n",
"
\n",
" \n",
" 36 | \n",
" 2016 | \n",
" FORD | \n",
" FOCUS ELECTRIC | \n",
" COMPACT | \n",
" 107 | \n",
" A1 | \n",
" B | \n",
" 19.0 | \n",
" 21.1 | \n",
" 20.0 | \n",
" 2.1 | \n",
" 2.4 | \n",
" 2.2 | \n",
" 0 | \n",
" 10.0 | \n",
" 122 | \n",
" 4 | \n",
"
\n",
" \n",
" 37 | \n",
" 2016 | \n",
" KIA | \n",
" SOUL EV | \n",
" STATION WAGON - SMALL | \n",
" 81 | \n",
" A1 | \n",
" B | \n",
" 17.5 | \n",
" 22.7 | \n",
" 19.9 | \n",
" 2.0 | \n",
" 2.6 | \n",
" 2.2 | \n",
" 0 | \n",
" 10.0 | \n",
" 149 | \n",
" 4 | \n",
"
\n",
" \n",
" 38 | \n",
" 2016 | \n",
" MITSUBISHI | \n",
" i-MiEV | \n",
" SUBCOMPACT | \n",
" 49 | \n",
" A1 | \n",
" B | \n",
" 16.9 | \n",
" 21.4 | \n",
" 18.7 | \n",
" 1.9 | \n",
" 2.4 | \n",
" 2.1 | \n",
" 0 | \n",
" 10.0 | \n",
" 100 | \n",
" 7 | \n",
"
\n",
" \n",
" 39 | \n",
" 2016 | \n",
" NISSAN | \n",
" LEAF (24 kWh battery) | \n",
" MID-SIZE | \n",
" 80 | \n",
" A1 | \n",
" B | \n",
" 16.5 | \n",
" 20.8 | \n",
" 18.4 | \n",
" 1.9 | \n",
" 2.3 | \n",
" 2.1 | \n",
" 0 | \n",
" 10.0 | \n",
" 135 | \n",
" 5 | \n",
"
\n",
" \n",
" 40 | \n",
" 2016 | \n",
" NISSAN | \n",
" LEAF (30 kWh battery) | \n",
" MID-SIZE | \n",
" 80 | \n",
" A1 | \n",
" B | \n",
" 17.0 | \n",
" 20.7 | \n",
" 18.6 | \n",
" 1.9 | \n",
" 2.3 | \n",
" 2.1 | \n",
" 0 | \n",
" 10.0 | \n",
" 172 | \n",
" 6 | \n",
"
\n",
" \n",
" 41 | \n",
" 2016 | \n",
" SMART | \n",
" FORTWO ELECTRIC DRIVE CABRIOLET | \n",
" TWO-SEATER | \n",
" 35 | \n",
" A1 | \n",
" B | \n",
" 17.2 | \n",
" 22.5 | \n",
" 19.6 | \n",
" 1.9 | \n",
" 2.5 | \n",
" 2.2 | \n",
" 0 | \n",
" 10.0 | \n",
" 109 | \n",
" 8 | \n",
"
\n",
" \n",
" 42 | \n",
" 2016 | \n",
" SMART | \n",
" FORTWO ELECTRIC DRIVE COUPE | \n",
" TWO-SEATER | \n",
" 35 | \n",
" A1 | \n",
" B | \n",
" 17.2 | \n",
" 22.5 | \n",
" 19.6 | \n",
" 1.9 | \n",
" 2.5 | \n",
" 2.2 | \n",
" 0 | \n",
" 10.0 | \n",
" 109 | \n",
" 8 | \n",
"
\n",
" \n",
" 43 | \n",
" 2016 | \n",
" TESLA | \n",
" MODEL S (60 kWh battery) | \n",
" FULL-SIZE | \n",
" 283 | \n",
" A1 | \n",
" B | \n",
" 22.2 | \n",
" 21.7 | \n",
" 21.9 | \n",
" 2.5 | \n",
" 2.4 | \n",
" 2.5 | \n",
" 0 | \n",
" 10.0 | \n",
" 335 | \n",
" 10 | \n",
"
\n",
" \n",
" 44 | \n",
" 2016 | \n",
" TESLA | \n",
" MODEL S (70 kWh battery) | \n",
" FULL-SIZE | \n",
" 283 | \n",
" A1 | \n",
" B | \n",
" 23.8 | \n",
" 23.2 | \n",
" 23.6 | \n",
" 2.7 | \n",
" 2.6 | \n",
" 2.6 | \n",
" 0 | \n",
" 10.0 | \n",
" 377 | \n",
" 12 | \n",
"
\n",
" \n",
" 45 | \n",
" 2016 | \n",
" TESLA | \n",
" MODEL S (85/90 kWh battery) | \n",
" FULL-SIZE | \n",
" 283 | \n",
" A1 | \n",
" B | \n",
" 23.8 | \n",
" 23.2 | \n",
" 23.6 | \n",
" 2.7 | \n",
" 2.6 | \n",
" 2.6 | \n",
" 0 | \n",
" 10.0 | \n",
" 426 | \n",
" 12 | \n",
"
\n",
" \n",
" 46 | \n",
" 2016 | \n",
" TESLA | \n",
" MODEL S 70D | \n",
" FULL-SIZE | \n",
" 386 | \n",
" A1 | \n",
" B | \n",
" 20.8 | \n",
" 20.6 | \n",
" 20.7 | \n",
" 2.3 | \n",
" 2.3 | \n",
" 2.3 | \n",
" 0 | \n",
" 10.0 | \n",
" 386 | \n",
" 12 | \n",
"
\n",
" \n",
" 47 | \n",
" 2016 | \n",
" TESLA | \n",
" MODEL S 85D/90D | \n",
" FULL-SIZE | \n",
" 386 | \n",
" A1 | \n",
" B | \n",
" 22.0 | \n",
" 19.8 | \n",
" 21.0 | \n",
" 2.5 | \n",
" 2.2 | \n",
" 2.4 | \n",
" 0 | \n",
" 10.0 | \n",
" 435 | \n",
" 12 | \n",
"
\n",
" \n",
" 48 | \n",
" 2016 | \n",
" TESLA | \n",
" MODEL S 90D (Refresh) | \n",
" FULL-SIZE | \n",
" 386 | \n",
" A1 | \n",
" B | \n",
" 20.8 | \n",
" 19.7 | \n",
" 20.3 | \n",
" 2.3 | \n",
" 2.2 | \n",
" 2.3 | \n",
" 0 | \n",
" 10.0 | \n",
" 473 | \n",
" 12 | \n",
"
\n",
" \n",
" 49 | \n",
" 2016 | \n",
" TESLA | \n",
" MODEL S P85D/P90D | \n",
" FULL-SIZE | \n",
" 568 | \n",
" A1 | \n",
" B | \n",
" 23.4 | \n",
" 21.5 | \n",
" 22.5 | \n",
" 2.6 | \n",
" 2.4 | \n",
" 2.5 | \n",
" 0 | \n",
" 10.0 | \n",
" 407 | \n",
" 12 | \n",
"
\n",
" \n",
" 50 | \n",
" 2016 | \n",
" TESLA | \n",
" MODEL S P90D (Refresh) | \n",
" FULL-SIZE | \n",
" 568 | \n",
" A1 | \n",
" B | \n",
" 22.9 | \n",
" 21.0 | \n",
" 22.1 | \n",
" 2.6 | \n",
" 2.4 | \n",
" 2.5 | \n",
" 0 | \n",
" 10.0 | \n",
" 435 | \n",
" 12 | \n",
"
\n",
" \n",
" 51 | \n",
" 2016 | \n",
" TESLA | \n",
" MODEL X 90D | \n",
" SUV - STANDARD | \n",
" 386 | \n",
" A1 | \n",
" B | \n",
" 23.2 | \n",
" 22.2 | \n",
" 22.7 | \n",
" 2.6 | \n",
" 2.5 | \n",
" 2.6 | \n",
" 0 | \n",
" 10.0 | \n",
" 414 | \n",
" 12 | \n",
"
\n",
" \n",
" 52 | \n",
" 2016 | \n",
" TESLA | \n",
" MODEL X P90D | \n",
" SUV - STANDARD | \n",
" 568 | \n",
" A1 | \n",
" B | \n",
" 23.6 | \n",
" 23.3 | \n",
" 23.5 | \n",
" 2.7 | \n",
" 2.6 | \n",
" 2.6 | \n",
" 0 | \n",
" 10.0 | \n",
" 402 | \n",
" 12 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" YEAR Make Model Size \\\n",
"0 2012 MITSUBISHI i-MiEV SUBCOMPACT \n",
"1 2012 NISSAN LEAF MID-SIZE \n",
"2 2013 FORD FOCUS ELECTRIC COMPACT \n",
"3 2013 MITSUBISHI i-MiEV SUBCOMPACT \n",
"4 2013 NISSAN LEAF MID-SIZE \n",
"5 2013 SMART FORTWO ELECTRIC DRIVE CABRIOLET TWO-SEATER \n",
"6 2013 SMART FORTWO ELECTRIC DRIVE COUPE TWO-SEATER \n",
"7 2013 TESLA MODEL S (40 kWh battery) FULL-SIZE \n",
"8 2013 TESLA MODEL S (60 kWh battery) FULL-SIZE \n",
"9 2013 TESLA MODEL S (85 kWh battery) FULL-SIZE \n",
"10 2013 TESLA MODEL S PERFORMANCE FULL-SIZE \n",
"11 2014 CHEVROLET SPARK EV SUBCOMPACT \n",
"12 2014 FORD FOCUS ELECTRIC COMPACT \n",
"13 2014 MITSUBISHI i-MiEV SUBCOMPACT \n",
"14 2014 NISSAN LEAF MID-SIZE \n",
"15 2014 SMART FORTWO ELECTRIC DRIVE CABRIOLET TWO-SEATER \n",
"16 2014 SMART FORTWO ELECTRIC DRIVE COUPE TWO-SEATER \n",
"17 2014 TESLA MODEL S (60 kWh battery) FULL-SIZE \n",
"18 2014 TESLA MODEL S (85 kWh battery) FULL-SIZE \n",
"19 2014 TESLA MODEL S PERFORMANCE FULL-SIZE \n",
"20 2015 BMW i3 SUBCOMPACT \n",
"21 2015 CHEVROLET SPARK EV SUBCOMPACT \n",
"22 2015 FORD FOCUS ELECTRIC COMPACT \n",
"23 2015 KIA SOUL EV STATION WAGON - SMALL \n",
"24 2015 MITSUBISHI i-MiEV SUBCOMPACT \n",
"25 2015 NISSAN LEAF MID-SIZE \n",
"26 2015 SMART FORTWO ELECTRIC DRIVE CABRIOLET TWO-SEATER \n",
"27 2015 SMART FORTWO ELECTRIC DRIVE COUPE TWO-SEATER \n",
"28 2015 TESLA MODEL S (60 kWh battery) FULL-SIZE \n",
"29 2015 TESLA MODEL S (70 kWh battery) FULL-SIZE \n",
"30 2015 TESLA MODEL S (85/90 kWh battery) FULL-SIZE \n",
"31 2015 TESLA MODEL S 70D FULL-SIZE \n",
"32 2015 TESLA MODEL S 85D/90D FULL-SIZE \n",
"33 2015 TESLA MODEL S P85D/P90D FULL-SIZE \n",
"34 2016 BMW i3 SUBCOMPACT \n",
"35 2016 CHEVROLET SPARK EV SUBCOMPACT \n",
"36 2016 FORD FOCUS ELECTRIC COMPACT \n",
"37 2016 KIA SOUL EV STATION WAGON - SMALL \n",
"38 2016 MITSUBISHI i-MiEV SUBCOMPACT \n",
"39 2016 NISSAN LEAF (24 kWh battery) MID-SIZE \n",
"40 2016 NISSAN LEAF (30 kWh battery) MID-SIZE \n",
"41 2016 SMART FORTWO ELECTRIC DRIVE CABRIOLET TWO-SEATER \n",
"42 2016 SMART FORTWO ELECTRIC DRIVE COUPE TWO-SEATER \n",
"43 2016 TESLA MODEL S (60 kWh battery) FULL-SIZE \n",
"44 2016 TESLA MODEL S (70 kWh battery) FULL-SIZE \n",
"45 2016 TESLA MODEL S (85/90 kWh battery) FULL-SIZE \n",
"46 2016 TESLA MODEL S 70D FULL-SIZE \n",
"47 2016 TESLA MODEL S 85D/90D FULL-SIZE \n",
"48 2016 TESLA MODEL S 90D (Refresh) FULL-SIZE \n",
"49 2016 TESLA MODEL S P85D/P90D FULL-SIZE \n",
"50 2016 TESLA MODEL S P90D (Refresh) FULL-SIZE \n",
"51 2016 TESLA MODEL X 90D SUV - STANDARD \n",
"52 2016 TESLA MODEL X P90D SUV - STANDARD \n",
"\n",
" (kW) Unnamed: 5 TYPE CITY (kWh/100 km) HWY (kWh/100 km) \\\n",
"0 49 A1 B 16.9 21.4 \n",
"1 80 A1 B 19.3 23.0 \n",
"2 107 A1 B 19.0 21.1 \n",
"3 49 A1 B 16.9 21.4 \n",
"4 80 A1 B 19.3 23.0 \n",
"5 35 A1 B 17.2 22.5 \n",
"6 35 A1 B 17.2 22.5 \n",
"7 270 A1 B 22.4 21.9 \n",
"8 270 A1 B 22.2 21.7 \n",
"9 270 A1 B 23.8 23.2 \n",
"10 310 A1 B 23.9 23.2 \n",
"11 104 A1 B 16.0 19.6 \n",
"12 107 A1 B 19.0 21.1 \n",
"13 49 A1 B 16.9 21.4 \n",
"14 80 A1 B 16.5 20.8 \n",
"15 35 A1 B 17.2 22.5 \n",
"16 35 A1 B 17.2 22.5 \n",
"17 225 A1 B 22.2 21.7 \n",
"18 270 A1 B 23.8 23.2 \n",
"19 310 A1 B 23.9 23.2 \n",
"20 125 A1 B 15.2 18.8 \n",
"21 104 A1 B 16.0 19.6 \n",
"22 107 A1 B 19.0 21.1 \n",
"23 81 A1 B 17.5 22.7 \n",
"24 49 A1 B 16.9 21.4 \n",
"25 80 A1 B 16.5 20.8 \n",
"26 35 A1 B 17.2 22.5 \n",
"27 35 A1 B 17.2 22.5 \n",
"28 283 A1 B 22.2 21.7 \n",
"29 283 A1 B 23.8 23.2 \n",
"30 283 A1 B 23.8 23.2 \n",
"31 280 A1 B 20.8 20.6 \n",
"32 280 A1 B 22.0 19.8 \n",
"33 515 A1 B 23.4 21.5 \n",
"34 125 A1 B 15.2 18.8 \n",
"35 104 A1 B 16.0 19.6 \n",
"36 107 A1 B 19.0 21.1 \n",
"37 81 A1 B 17.5 22.7 \n",
"38 49 A1 B 16.9 21.4 \n",
"39 80 A1 B 16.5 20.8 \n",
"40 80 A1 B 17.0 20.7 \n",
"41 35 A1 B 17.2 22.5 \n",
"42 35 A1 B 17.2 22.5 \n",
"43 283 A1 B 22.2 21.7 \n",
"44 283 A1 B 23.8 23.2 \n",
"45 283 A1 B 23.8 23.2 \n",
"46 386 A1 B 20.8 20.6 \n",
"47 386 A1 B 22.0 19.8 \n",
"48 386 A1 B 20.8 19.7 \n",
"49 568 A1 B 23.4 21.5 \n",
"50 568 A1 B 22.9 21.0 \n",
"51 386 A1 B 23.2 22.2 \n",
"52 568 A1 B 23.6 23.3 \n",
"\n",
" COMB (kWh/100 km) CITY (Le/100 km) HWY (Le/100 km) COMB (Le/100 km) \\\n",
"0 18.7 1.9 2.4 2.1 \n",
"1 21.1 2.2 2.6 2.4 \n",
"2 20.0 2.1 2.4 2.2 \n",
"3 18.7 1.9 2.4 2.1 \n",
"4 21.1 2.2 2.6 2.4 \n",
"5 19.6 1.9 2.5 2.2 \n",
"6 19.6 1.9 2.5 2.2 \n",
"7 22.2 2.5 2.5 2.5 \n",
"8 21.9 2.5 2.4 2.5 \n",
"9 23.6 2.7 2.6 2.6 \n",
"10 23.6 2.7 2.6 2.6 \n",
"11 17.8 1.8 2.2 2.0 \n",
"12 20.0 2.1 2.4 2.2 \n",
"13 18.7 1.9 2.4 2.1 \n",
"14 18.4 1.9 2.3 2.1 \n",
"15 19.6 1.9 2.5 2.2 \n",
"16 19.6 1.9 2.5 2.2 \n",
"17 21.9 2.5 2.4 2.5 \n",
"18 23.6 2.7 2.6 2.6 \n",
"19 23.6 2.7 2.6 2.6 \n",
"20 16.8 1.7 2.1 1.9 \n",
"21 17.8 1.8 2.2 2.0 \n",
"22 20.0 2.1 2.4 2.2 \n",
"23 19.9 2.0 2.6 2.2 \n",
"24 18.7 1.9 2.4 2.1 \n",
"25 18.4 1.9 2.3 2.1 \n",
"26 19.6 1.9 2.5 2.2 \n",
"27 19.6 1.9 2.5 2.2 \n",
"28 21.9 2.5 2.4 2.5 \n",
"29 23.6 2.7 2.6 2.6 \n",
"30 23.6 2.7 2.6 2.6 \n",
"31 20.7 2.3 2.3 2.3 \n",
"32 21.0 2.5 2.2 2.4 \n",
"33 22.5 2.6 2.4 2.5 \n",
"34 16.8 1.7 2.1 1.9 \n",
"35 17.8 1.8 2.2 2.0 \n",
"36 20.0 2.1 2.4 2.2 \n",
"37 19.9 2.0 2.6 2.2 \n",
"38 18.7 1.9 2.4 2.1 \n",
"39 18.4 1.9 2.3 2.1 \n",
"40 18.6 1.9 2.3 2.1 \n",
"41 19.6 1.9 2.5 2.2 \n",
"42 19.6 1.9 2.5 2.2 \n",
"43 21.9 2.5 2.4 2.5 \n",
"44 23.6 2.7 2.6 2.6 \n",
"45 23.6 2.7 2.6 2.6 \n",
"46 20.7 2.3 2.3 2.3 \n",
"47 21.0 2.5 2.2 2.4 \n",
"48 20.3 2.3 2.2 2.3 \n",
"49 22.5 2.6 2.4 2.5 \n",
"50 22.1 2.6 2.4 2.5 \n",
"51 22.7 2.6 2.5 2.6 \n",
"52 23.5 2.7 2.6 2.6 \n",
"\n",
" (g/km) RATING (km) TIME (h) \n",
"0 0 NaN 100 7 \n",
"1 0 NaN 117 7 \n",
"2 0 NaN 122 4 \n",
"3 0 NaN 100 7 \n",
"4 0 NaN 117 7 \n",
"5 0 NaN 109 8 \n",
"6 0 NaN 109 8 \n",
"7 0 NaN 224 6 \n",
"8 0 NaN 335 10 \n",
"9 0 NaN 426 12 \n",
"10 0 NaN 426 12 \n",
"11 0 NaN 131 7 \n",
"12 0 NaN 122 4 \n",
"13 0 NaN 100 7 \n",
"14 0 NaN 135 5 \n",
"15 0 NaN 109 8 \n",
"16 0 NaN 109 8 \n",
"17 0 NaN 335 10 \n",
"18 0 NaN 426 12 \n",
"19 0 NaN 426 12 \n",
"20 0 NaN 130 4 \n",
"21 0 NaN 131 7 \n",
"22 0 NaN 122 4 \n",
"23 0 NaN 149 4 \n",
"24 0 NaN 100 7 \n",
"25 0 NaN 135 5 \n",
"26 0 NaN 109 8 \n",
"27 0 NaN 109 8 \n",
"28 0 NaN 335 10 \n",
"29 0 NaN 377 12 \n",
"30 0 NaN 426 12 \n",
"31 0 NaN 386 12 \n",
"32 0 NaN 435 12 \n",
"33 0 NaN 407 12 \n",
"34 0 10.0 130 4 \n",
"35 0 10.0 131 7 \n",
"36 0 10.0 122 4 \n",
"37 0 10.0 149 4 \n",
"38 0 10.0 100 7 \n",
"39 0 10.0 135 5 \n",
"40 0 10.0 172 6 \n",
"41 0 10.0 109 8 \n",
"42 0 10.0 109 8 \n",
"43 0 10.0 335 10 \n",
"44 0 10.0 377 12 \n",
"45 0 10.0 426 12 \n",
"46 0 10.0 386 12 \n",
"47 0 10.0 435 12 \n",
"48 0 10.0 473 12 \n",
"49 0 10.0 407 12 \n",
"50 0 10.0 435 12 \n",
"51 0 10.0 414 12 \n",
"52 0 10.0 402 12 "
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ecars_csv = pd.read_csv('e-cars.csv', sep=';')\n",
"ecars_csv"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "f0715dcc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"RangeIndex(start=0, stop=407, step=1)"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_csv.index"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "9deb2066",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"RangeIndex(start=0, stop=53, step=1)"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ecars_csv.index"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "a0976952",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['YEAR', 'Make', 'Model', 'Size', '(kW)', 'Unnamed: 5', 'TYPE',\n",
" 'CITY (kWh/100 km)', 'HWY (kWh/100 km)', 'COMB (kWh/100 km)',\n",
" 'CITY (Le/100 km)', 'HWY (Le/100 km)', 'COMB (Le/100 km)', '(g/km)',\n",
" 'RATING', '(km)', 'TIME (h)'],\n",
" dtype='object')"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ecars_csv.columns"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "39976834",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"YEAR int64\n",
"Make object\n",
"Model object\n",
"Size object\n",
"(kW) int64\n",
"Unnamed: 5 object\n",
"TYPE object\n",
"CITY (kWh/100 km) float64\n",
"HWY (kWh/100 km) float64\n",
"COMB (kWh/100 km) float64\n",
"CITY (Le/100 km) float64\n",
"HWY (Le/100 km) float64\n",
"COMB (Le/100 km) float64\n",
"(g/km) int64\n",
"RATING float64\n",
"(km) int64\n",
"TIME (h) int64\n",
"dtype: object"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ecars_csv.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "87c57f1c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Car object\n",
"MPG object\n",
"Cylinders object\n",
"Displacement object\n",
"Horsepower object\n",
"Weight object\n",
"Acceleration object\n",
"Model object\n",
"Origin object\n",
"dtype: object"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_csv.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "30c85bbc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['STRING', 'DOUBLE', 'INT', 'DOUBLE', 'DOUBLE', 'DOUBLE', 'DOUBLE',\n",
" 'INT', 'CAT'], dtype=object)"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_csv.values[0]"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "6027573c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([2012, 'MITSUBISHI', 'i-MiEV', 'SUBCOMPACT', 49, 'A1', 'B', 16.9,\n",
" 21.4, 18.7, 1.9, 2.4, 2.1, 0, nan, 100, 7], dtype=object)"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ecars_csv.values[0]"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "deaa9995",
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "could not convert string to float: 'DOUBLE'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[26], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m cars_csv[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mMPG\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m cars_csv[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mMPG\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mastype(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfloat64\u001b[39m\u001b[38;5;124m'\u001b[39m)\n",
"File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\core\\generic.py:6324\u001b[0m, in \u001b[0;36mNDFrame.astype\u001b[1;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[0;32m 6317\u001b[0m results \u001b[38;5;241m=\u001b[39m [\n\u001b[0;32m 6318\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39miloc[:, i]\u001b[38;5;241m.\u001b[39mastype(dtype, copy\u001b[38;5;241m=\u001b[39mcopy)\n\u001b[0;32m 6319\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcolumns))\n\u001b[0;32m 6320\u001b[0m ]\n\u001b[0;32m 6322\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 6323\u001b[0m \u001b[38;5;66;03m# else, only a single dtype is given\u001b[39;00m\n\u001b[1;32m-> 6324\u001b[0m new_data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_mgr\u001b[38;5;241m.\u001b[39mastype(dtype\u001b[38;5;241m=\u001b[39mdtype, copy\u001b[38;5;241m=\u001b[39mcopy, errors\u001b[38;5;241m=\u001b[39merrors)\n\u001b[0;32m 6325\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_constructor(new_data)\u001b[38;5;241m.\u001b[39m__finalize__(\u001b[38;5;28mself\u001b[39m, method\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mastype\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 6327\u001b[0m \u001b[38;5;66;03m# GH 33113: handle empty frame or series\u001b[39;00m\n",
"File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\core\\internals\\managers.py:451\u001b[0m, in \u001b[0;36mBaseBlockManager.astype\u001b[1;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[0;32m 448\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m using_copy_on_write():\n\u001b[0;32m 449\u001b[0m copy \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m--> 451\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mapply(\n\u001b[0;32m 452\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mastype\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 453\u001b[0m dtype\u001b[38;5;241m=\u001b[39mdtype,\n\u001b[0;32m 454\u001b[0m copy\u001b[38;5;241m=\u001b[39mcopy,\n\u001b[0;32m 455\u001b[0m errors\u001b[38;5;241m=\u001b[39merrors,\n\u001b[0;32m 456\u001b[0m using_cow\u001b[38;5;241m=\u001b[39musing_copy_on_write(),\n\u001b[0;32m 457\u001b[0m )\n",
"File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\core\\internals\\managers.py:352\u001b[0m, in \u001b[0;36mBaseBlockManager.apply\u001b[1;34m(self, f, align_keys, **kwargs)\u001b[0m\n\u001b[0;32m 350\u001b[0m applied \u001b[38;5;241m=\u001b[39m b\u001b[38;5;241m.\u001b[39mapply(f, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 351\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m--> 352\u001b[0m applied \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(b, f)(\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 353\u001b[0m result_blocks \u001b[38;5;241m=\u001b[39m extend_blocks(applied, result_blocks)\n\u001b[0;32m 355\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mtype\u001b[39m(\u001b[38;5;28mself\u001b[39m)\u001b[38;5;241m.\u001b[39mfrom_blocks(result_blocks, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39maxes)\n",
"File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\core\\internals\\blocks.py:511\u001b[0m, in \u001b[0;36mBlock.astype\u001b[1;34m(self, dtype, copy, errors, using_cow)\u001b[0m\n\u001b[0;32m 491\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 492\u001b[0m \u001b[38;5;124;03mCoerce to the new dtype.\u001b[39;00m\n\u001b[0;32m 493\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 507\u001b[0m \u001b[38;5;124;03mBlock\u001b[39;00m\n\u001b[0;32m 508\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 509\u001b[0m values \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvalues\n\u001b[1;32m--> 511\u001b[0m new_values \u001b[38;5;241m=\u001b[39m astype_array_safe(values, dtype, copy\u001b[38;5;241m=\u001b[39mcopy, errors\u001b[38;5;241m=\u001b[39merrors)\n\u001b[0;32m 513\u001b[0m new_values \u001b[38;5;241m=\u001b[39m maybe_coerce_values(new_values)\n\u001b[0;32m 515\u001b[0m refs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
"File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\core\\dtypes\\astype.py:242\u001b[0m, in \u001b[0;36mastype_array_safe\u001b[1;34m(values, dtype, copy, errors)\u001b[0m\n\u001b[0;32m 239\u001b[0m dtype \u001b[38;5;241m=\u001b[39m dtype\u001b[38;5;241m.\u001b[39mnumpy_dtype\n\u001b[0;32m 241\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 242\u001b[0m new_values \u001b[38;5;241m=\u001b[39m astype_array(values, dtype, copy\u001b[38;5;241m=\u001b[39mcopy)\n\u001b[0;32m 243\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (\u001b[38;5;167;01mValueError\u001b[39;00m, \u001b[38;5;167;01mTypeError\u001b[39;00m):\n\u001b[0;32m 244\u001b[0m \u001b[38;5;66;03m# e.g. _astype_nansafe can fail on object-dtype of strings\u001b[39;00m\n\u001b[0;32m 245\u001b[0m \u001b[38;5;66;03m# trying to convert to float\u001b[39;00m\n\u001b[0;32m 246\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m errors \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mignore\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n",
"File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\core\\dtypes\\astype.py:187\u001b[0m, in \u001b[0;36mastype_array\u001b[1;34m(values, dtype, copy)\u001b[0m\n\u001b[0;32m 184\u001b[0m values \u001b[38;5;241m=\u001b[39m values\u001b[38;5;241m.\u001b[39mastype(dtype, copy\u001b[38;5;241m=\u001b[39mcopy)\n\u001b[0;32m 186\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m--> 187\u001b[0m values \u001b[38;5;241m=\u001b[39m _astype_nansafe(values, dtype, copy\u001b[38;5;241m=\u001b[39mcopy)\n\u001b[0;32m 189\u001b[0m \u001b[38;5;66;03m# in pandas we don't store numpy str dtypes, so convert to object\u001b[39;00m\n\u001b[0;32m 190\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(dtype, np\u001b[38;5;241m.\u001b[39mdtype) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28missubclass\u001b[39m(values\u001b[38;5;241m.\u001b[39mdtype\u001b[38;5;241m.\u001b[39mtype, \u001b[38;5;28mstr\u001b[39m):\n",
"File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\core\\dtypes\\astype.py:138\u001b[0m, in \u001b[0;36m_astype_nansafe\u001b[1;34m(arr, dtype, copy, skipna)\u001b[0m\n\u001b[0;32m 134\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(msg)\n\u001b[0;32m 136\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m copy \u001b[38;5;129;01mor\u001b[39;00m is_object_dtype(arr\u001b[38;5;241m.\u001b[39mdtype) \u001b[38;5;129;01mor\u001b[39;00m is_object_dtype(dtype):\n\u001b[0;32m 137\u001b[0m \u001b[38;5;66;03m# Explicit copy, or required since NumPy can't view from / to object.\u001b[39;00m\n\u001b[1;32m--> 138\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m arr\u001b[38;5;241m.\u001b[39mastype(dtype, copy\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m 140\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m arr\u001b[38;5;241m.\u001b[39mastype(dtype, copy\u001b[38;5;241m=\u001b[39mcopy)\n",
"\u001b[1;31mValueError\u001b[0m: could not convert string to float: 'DOUBLE'"
]
}
],
"source": [
"cars_csv['MPG'] = cars_csv['MPG'].astype('float64')"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "79a758e9",
"metadata": {},
"outputs": [],
"source": [
"cars_df = cars_csv.drop([0]) # brišemo prvi redak"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "dbda3a45",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Car object\n",
"MPG object\n",
"Cylinders object\n",
"Displacement object\n",
"Horsepower object\n",
"Weight object\n",
"Acceleration object\n",
"Model object\n",
"Origin object\n",
"dtype: object"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_df.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "e28f33f0",
"metadata": {},
"outputs": [],
"source": [
"cars_df['MPG'] = cars_df['MPG'].astype('float64')"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "925bc558",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Car object\n",
"MPG float64\n",
"Cylinders object\n",
"Displacement object\n",
"Horsepower object\n",
"Weight object\n",
"Acceleration object\n",
"Model object\n",
"Origin object\n",
"dtype: object"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_df.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "41e37c95",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Car object\n",
"MPG float64\n",
"Cylinders int64\n",
"Displacement object\n",
"Horsepower object\n",
"Weight object\n",
"Acceleration object\n",
"Model object\n",
"Origin object\n",
"dtype: object"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_df['Cylinders'] = cars_df['Cylinders'].astype('int64')\n",
"cars_df.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "e5089af1",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Car | \n",
" MPG | \n",
" Cylinders | \n",
" Displacement | \n",
" Horsepower | \n",
" Weight | \n",
" Acceleration | \n",
" Model | \n",
" Origin | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Chevrolet Chevelle Malibu | \n",
" 18.0 | \n",
" 8 | \n",
" 307.0 | \n",
" 130.0 | \n",
" 3504.0 | \n",
" 12.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 1 | \n",
" Buick Skylark 320 | \n",
" 15.0 | \n",
" 8 | \n",
" 350.0 | \n",
" 165.0 | \n",
" 3693.0 | \n",
" 11.5 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 2 | \n",
" Plymouth Satellite | \n",
" 18.0 | \n",
" 8 | \n",
" 318.0 | \n",
" 150.0 | \n",
" 3436.0 | \n",
" 11.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 3 | \n",
" AMC Rebel SST | \n",
" 16.0 | \n",
" 8 | \n",
" 304.0 | \n",
" 150.0 | \n",
" 3433.0 | \n",
" 12.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 4 | \n",
" Ford Torino | \n",
" 17.0 | \n",
" 8 | \n",
" 302.0 | \n",
" 140.0 | \n",
" 3449.0 | \n",
" 10.5 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 401 | \n",
" Ford Mustang GL | \n",
" 27.0 | \n",
" 4 | \n",
" 140.0 | \n",
" 86.0 | \n",
" 2790.0 | \n",
" 15.6 | \n",
" 82 | \n",
" US | \n",
"
\n",
" \n",
" 402 | \n",
" Volkswagen Pickup | \n",
" 44.0 | \n",
" 4 | \n",
" 97.0 | \n",
" 52.0 | \n",
" 2130.0 | \n",
" 24.6 | \n",
" 82 | \n",
" Europe | \n",
"
\n",
" \n",
" 403 | \n",
" Dodge Rampage | \n",
" 32.0 | \n",
" 4 | \n",
" 135.0 | \n",
" 84.0 | \n",
" 2295.0 | \n",
" 11.6 | \n",
" 82 | \n",
" US | \n",
"
\n",
" \n",
" 404 | \n",
" Ford Ranger | \n",
" 28.0 | \n",
" 4 | \n",
" 120.0 | \n",
" 79.0 | \n",
" 2625.0 | \n",
" 18.6 | \n",
" 82 | \n",
" US | \n",
"
\n",
" \n",
" 405 | \n",
" Chevy S-10 | \n",
" 31.0 | \n",
" 4 | \n",
" 119.0 | \n",
" 82.0 | \n",
" 2720.0 | \n",
" 19.4 | \n",
" 82 | \n",
" US | \n",
"
\n",
" \n",
"
\n",
"
406 rows × 9 columns
\n",
"
"
],
"text/plain": [
" Car MPG Cylinders Displacement Horsepower \\\n",
"0 Chevrolet Chevelle Malibu 18.0 8 307.0 130.0 \n",
"1 Buick Skylark 320 15.0 8 350.0 165.0 \n",
"2 Plymouth Satellite 18.0 8 318.0 150.0 \n",
"3 AMC Rebel SST 16.0 8 304.0 150.0 \n",
"4 Ford Torino 17.0 8 302.0 140.0 \n",
".. ... ... ... ... ... \n",
"401 Ford Mustang GL 27.0 4 140.0 86.0 \n",
"402 Volkswagen Pickup 44.0 4 97.0 52.0 \n",
"403 Dodge Rampage 32.0 4 135.0 84.0 \n",
"404 Ford Ranger 28.0 4 120.0 79.0 \n",
"405 Chevy S-10 31.0 4 119.0 82.0 \n",
"\n",
" Weight Acceleration Model Origin \n",
"0 3504.0 12.0 70 US \n",
"1 3693.0 11.5 70 US \n",
"2 3436.0 11.0 70 US \n",
"3 3433.0 12.0 70 US \n",
"4 3449.0 10.5 70 US \n",
".. ... ... ... ... \n",
"401 2790.0 15.6 82 US \n",
"402 2130.0 24.6 82 Europe \n",
"403 2295.0 11.6 82 US \n",
"404 2625.0 18.6 82 US \n",
"405 2720.0 19.4 82 US \n",
"\n",
"[406 rows x 9 columns]"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_csv = pd.read_csv('cars.csv', sep=';', skiprows=[1])\n",
"cars_csv"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "1a8dfa36",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Car object\n",
"MPG float64\n",
"Cylinders int64\n",
"Displacement float64\n",
"Horsepower float64\n",
"Weight float64\n",
"Acceleration float64\n",
"Model int64\n",
"Origin object\n",
"dtype: object"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_csv.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "d58e2a84",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_csv.empty # ispituje ima li praznih ćelija"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "d2b11cfa",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Car | \n",
" MPG | \n",
" Cylinders | \n",
" Displacement | \n",
" Horsepower | \n",
" Weight | \n",
" Acceleration | \n",
" Model | \n",
" Origin | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Chevrolet Chevelle Malibu | \n",
" 18.0 | \n",
" 8 | \n",
" 307.0 | \n",
" 130.0 | \n",
" 3504.0 | \n",
" 12.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 1 | \n",
" Buick Skylark 320 | \n",
" 15.0 | \n",
" 8 | \n",
" 350.0 | \n",
" 165.0 | \n",
" 3693.0 | \n",
" 11.5 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 2 | \n",
" Plymouth Satellite | \n",
" 18.0 | \n",
" 8 | \n",
" 318.0 | \n",
" 150.0 | \n",
" 3436.0 | \n",
" 11.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 3 | \n",
" AMC Rebel SST | \n",
" 16.0 | \n",
" 8 | \n",
" 304.0 | \n",
" 150.0 | \n",
" 3433.0 | \n",
" 12.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 4 | \n",
" Ford Torino | \n",
" 17.0 | \n",
" 8 | \n",
" 302.0 | \n",
" 140.0 | \n",
" 3449.0 | \n",
" 10.5 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 5 | \n",
" Ford Galaxie 500 | \n",
" 15.0 | \n",
" 8 | \n",
" 429.0 | \n",
" 198.0 | \n",
" 4341.0 | \n",
" 10.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 6 | \n",
" Chevrolet Impala | \n",
" 14.0 | \n",
" 8 | \n",
" 454.0 | \n",
" 220.0 | \n",
" 4354.0 | \n",
" 9.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 7 | \n",
" Plymouth Fury iii | \n",
" 14.0 | \n",
" 8 | \n",
" 440.0 | \n",
" 215.0 | \n",
" 4312.0 | \n",
" 8.5 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 8 | \n",
" Pontiac Catalina | \n",
" 14.0 | \n",
" 8 | \n",
" 455.0 | \n",
" 225.0 | \n",
" 4425.0 | \n",
" 10.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 9 | \n",
" AMC Ambassador DPL | \n",
" 15.0 | \n",
" 8 | \n",
" 390.0 | \n",
" 190.0 | \n",
" 3850.0 | \n",
" 8.5 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Car MPG Cylinders Displacement Horsepower \\\n",
"0 Chevrolet Chevelle Malibu 18.0 8 307.0 130.0 \n",
"1 Buick Skylark 320 15.0 8 350.0 165.0 \n",
"2 Plymouth Satellite 18.0 8 318.0 150.0 \n",
"3 AMC Rebel SST 16.0 8 304.0 150.0 \n",
"4 Ford Torino 17.0 8 302.0 140.0 \n",
"5 Ford Galaxie 500 15.0 8 429.0 198.0 \n",
"6 Chevrolet Impala 14.0 8 454.0 220.0 \n",
"7 Plymouth Fury iii 14.0 8 440.0 215.0 \n",
"8 Pontiac Catalina 14.0 8 455.0 225.0 \n",
"9 AMC Ambassador DPL 15.0 8 390.0 190.0 \n",
"\n",
" Weight Acceleration Model Origin \n",
"0 3504.0 12.0 70 US \n",
"1 3693.0 11.5 70 US \n",
"2 3436.0 11.0 70 US \n",
"3 3433.0 12.0 70 US \n",
"4 3449.0 10.5 70 US \n",
"5 4341.0 10.0 70 US \n",
"6 4354.0 9.0 70 US \n",
"7 4312.0 8.5 70 US \n",
"8 4425.0 10.0 70 US \n",
"9 3850.0 8.5 70 US "
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_csv.head(10)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "4d19800d",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Car | \n",
" MPG | \n",
" Cylinders | \n",
" Displacement | \n",
" Horsepower | \n",
" Weight | \n",
" Acceleration | \n",
" Model | \n",
" Origin | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Chevrolet Chevelle Malibu | \n",
" 18.0 | \n",
" 8 | \n",
" 307.0 | \n",
" 130.0 | \n",
" 3504.0 | \n",
" 12.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 1 | \n",
" Buick Skylark 320 | \n",
" 15.0 | \n",
" 8 | \n",
" 350.0 | \n",
" 165.0 | \n",
" 3693.0 | \n",
" 11.5 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 2 | \n",
" Plymouth Satellite | \n",
" 18.0 | \n",
" 8 | \n",
" 318.0 | \n",
" 150.0 | \n",
" 3436.0 | \n",
" 11.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 3 | \n",
" AMC Rebel SST | \n",
" 16.0 | \n",
" 8 | \n",
" 304.0 | \n",
" 150.0 | \n",
" 3433.0 | \n",
" 12.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 4 | \n",
" Ford Torino | \n",
" 17.0 | \n",
" 8 | \n",
" 302.0 | \n",
" 140.0 | \n",
" 3449.0 | \n",
" 10.5 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 5 | \n",
" Ford Galaxie 500 | \n",
" 15.0 | \n",
" 8 | \n",
" 429.0 | \n",
" 198.0 | \n",
" 4341.0 | \n",
" 10.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 6 | \n",
" Chevrolet Impala | \n",
" 14.0 | \n",
" 8 | \n",
" 454.0 | \n",
" 220.0 | \n",
" 4354.0 | \n",
" 9.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 7 | \n",
" Plymouth Fury iii | \n",
" 14.0 | \n",
" 8 | \n",
" 440.0 | \n",
" 215.0 | \n",
" 4312.0 | \n",
" 8.5 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 8 | \n",
" Pontiac Catalina | \n",
" 14.0 | \n",
" 8 | \n",
" 455.0 | \n",
" 225.0 | \n",
" 4425.0 | \n",
" 10.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 9 | \n",
" AMC Ambassador DPL | \n",
" 15.0 | \n",
" 8 | \n",
" 390.0 | \n",
" 190.0 | \n",
" 3850.0 | \n",
" 8.5 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Car MPG Cylinders Displacement Horsepower \\\n",
"0 Chevrolet Chevelle Malibu 18.0 8 307.0 130.0 \n",
"1 Buick Skylark 320 15.0 8 350.0 165.0 \n",
"2 Plymouth Satellite 18.0 8 318.0 150.0 \n",
"3 AMC Rebel SST 16.0 8 304.0 150.0 \n",
"4 Ford Torino 17.0 8 302.0 140.0 \n",
"5 Ford Galaxie 500 15.0 8 429.0 198.0 \n",
"6 Chevrolet Impala 14.0 8 454.0 220.0 \n",
"7 Plymouth Fury iii 14.0 8 440.0 215.0 \n",
"8 Pontiac Catalina 14.0 8 455.0 225.0 \n",
"9 AMC Ambassador DPL 15.0 8 390.0 190.0 \n",
"\n",
" Weight Acceleration Model Origin \n",
"0 3504.0 12.0 70 US \n",
"1 3693.0 11.5 70 US \n",
"2 3436.0 11.0 70 US \n",
"3 3433.0 12.0 70 US \n",
"4 3449.0 10.5 70 US \n",
"5 4341.0 10.0 70 US \n",
"6 4354.0 9.0 70 US \n",
"7 4312.0 8.5 70 US \n",
"8 4425.0 10.0 70 US \n",
"9 3850.0 8.5 70 US "
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_csv.head(10)"
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "4b4bd6f5",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Car | \n",
" MPG | \n",
" Cylinders | \n",
" Displacement | \n",
" Horsepower | \n",
" Weight | \n",
" Acceleration | \n",
" Model | \n",
" Origin | \n",
"
\n",
" \n",
" \n",
" \n",
" 393 | \n",
" Datsun 310 GX | \n",
" 38.0 | \n",
" 4 | \n",
" 91.0 | \n",
" 67.0 | \n",
" 1995.0 | \n",
" 16.2 | \n",
" 82 | \n",
" Japan | \n",
"
\n",
" \n",
" 394 | \n",
" Buick Century Limited | \n",
" 25.0 | \n",
" 6 | \n",
" 181.0 | \n",
" 110.0 | \n",
" 2945.0 | \n",
" 16.4 | \n",
" 82 | \n",
" US | \n",
"
\n",
" \n",
" 395 | \n",
" Oldsmobile Cutlass Ciera (diesel) | \n",
" 38.0 | \n",
" 6 | \n",
" 262.0 | \n",
" 85.0 | \n",
" 3015.0 | \n",
" 17.0 | \n",
" 82 | \n",
" US | \n",
"
\n",
" \n",
" 396 | \n",
" Chrysler Lebaron Medallion | \n",
" 26.0 | \n",
" 4 | \n",
" 156.0 | \n",
" 92.0 | \n",
" 2585.0 | \n",
" 14.5 | \n",
" 82 | \n",
" US | \n",
"
\n",
" \n",
" 397 | \n",
" Ford Grenada l | \n",
" 22.0 | \n",
" 6 | \n",
" 232.0 | \n",
" 112.0 | \n",
" 2835.0 | \n",
" 14.7 | \n",
" 82 | \n",
" US | \n",
"
\n",
" \n",
" 398 | \n",
" Toyota Celica GT | \n",
" 32.0 | \n",
" 4 | \n",
" 144.0 | \n",
" 96.0 | \n",
" 2665.0 | \n",
" 13.9 | \n",
" 82 | \n",
" Japan | \n",
"
\n",
" \n",
" 399 | \n",
" Dodge Charger 2.2 | \n",
" 36.0 | \n",
" 4 | \n",
" 135.0 | \n",
" 84.0 | \n",
" 2370.0 | \n",
" 13.0 | \n",
" 82 | \n",
" US | \n",
"
\n",
" \n",
" 400 | \n",
" Chevrolet Camaro | \n",
" 27.0 | \n",
" 4 | \n",
" 151.0 | \n",
" 90.0 | \n",
" 2950.0 | \n",
" 17.3 | \n",
" 82 | \n",
" US | \n",
"
\n",
" \n",
" 401 | \n",
" Ford Mustang GL | \n",
" 27.0 | \n",
" 4 | \n",
" 140.0 | \n",
" 86.0 | \n",
" 2790.0 | \n",
" 15.6 | \n",
" 82 | \n",
" US | \n",
"
\n",
" \n",
" 402 | \n",
" Volkswagen Pickup | \n",
" 44.0 | \n",
" 4 | \n",
" 97.0 | \n",
" 52.0 | \n",
" 2130.0 | \n",
" 24.6 | \n",
" 82 | \n",
" Europe | \n",
"
\n",
" \n",
" 403 | \n",
" Dodge Rampage | \n",
" 32.0 | \n",
" 4 | \n",
" 135.0 | \n",
" 84.0 | \n",
" 2295.0 | \n",
" 11.6 | \n",
" 82 | \n",
" US | \n",
"
\n",
" \n",
" 404 | \n",
" Ford Ranger | \n",
" 28.0 | \n",
" 4 | \n",
" 120.0 | \n",
" 79.0 | \n",
" 2625.0 | \n",
" 18.6 | \n",
" 82 | \n",
" US | \n",
"
\n",
" \n",
" 405 | \n",
" Chevy S-10 | \n",
" 31.0 | \n",
" 4 | \n",
" 119.0 | \n",
" 82.0 | \n",
" 2720.0 | \n",
" 19.4 | \n",
" 82 | \n",
" US | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Car MPG Cylinders Displacement \\\n",
"393 Datsun 310 GX 38.0 4 91.0 \n",
"394 Buick Century Limited 25.0 6 181.0 \n",
"395 Oldsmobile Cutlass Ciera (diesel) 38.0 6 262.0 \n",
"396 Chrysler Lebaron Medallion 26.0 4 156.0 \n",
"397 Ford Grenada l 22.0 6 232.0 \n",
"398 Toyota Celica GT 32.0 4 144.0 \n",
"399 Dodge Charger 2.2 36.0 4 135.0 \n",
"400 Chevrolet Camaro 27.0 4 151.0 \n",
"401 Ford Mustang GL 27.0 4 140.0 \n",
"402 Volkswagen Pickup 44.0 4 97.0 \n",
"403 Dodge Rampage 32.0 4 135.0 \n",
"404 Ford Ranger 28.0 4 120.0 \n",
"405 Chevy S-10 31.0 4 119.0 \n",
"\n",
" Horsepower Weight Acceleration Model Origin \n",
"393 67.0 1995.0 16.2 82 Japan \n",
"394 110.0 2945.0 16.4 82 US \n",
"395 85.0 3015.0 17.0 82 US \n",
"396 92.0 2585.0 14.5 82 US \n",
"397 112.0 2835.0 14.7 82 US \n",
"398 96.0 2665.0 13.9 82 Japan \n",
"399 84.0 2370.0 13.0 82 US \n",
"400 90.0 2950.0 17.3 82 US \n",
"401 86.0 2790.0 15.6 82 US \n",
"402 52.0 2130.0 24.6 82 Europe \n",
"403 84.0 2295.0 11.6 82 US \n",
"404 79.0 2625.0 18.6 82 US \n",
"405 82.0 2720.0 19.4 82 US "
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_csv.tail(13)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "c27e8bb4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(406, 9)"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_csv.shape"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "61ac3658",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 406 entries, 0 to 405\n",
"Data columns (total 9 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Car 406 non-null object \n",
" 1 MPG 406 non-null float64\n",
" 2 Cylinders 406 non-null int64 \n",
" 3 Displacement 406 non-null float64\n",
" 4 Horsepower 406 non-null float64\n",
" 5 Weight 406 non-null float64\n",
" 6 Acceleration 406 non-null float64\n",
" 7 Model 406 non-null int64 \n",
" 8 Origin 406 non-null object \n",
"dtypes: float64(5), int64(2), object(2)\n",
"memory usage: 28.7+ KB\n"
]
}
],
"source": [
"cars_csv.info()"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "b22c7ab0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['AMC Rebel SST', 16.0, 8, 304.0, 150.0, 3433.0, 12.0, 70, 'US'],\n",
" dtype=object)"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_csv.values[3]"
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "5c2fbaad",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Car | \n",
" MPG | \n",
" Cylinders | \n",
" Displacement | \n",
" Horsepower | \n",
" Weight | \n",
" Acceleration | \n",
" Model | \n",
" Origin | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Chevrolet Chevelle Malibu | \n",
" 18.0 | \n",
" 8 | \n",
" 307.0 | \n",
" 130.0 | \n",
" 3504.0 | \n",
" 12.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 1 | \n",
" Buick Skylark 320 | \n",
" 15.0 | \n",
" 8 | \n",
" 350.0 | \n",
" 165.0 | \n",
" 3693.0 | \n",
" 11.5 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 2 | \n",
" Plymouth Satellite | \n",
" 18.0 | \n",
" 8 | \n",
" 318.0 | \n",
" 150.0 | \n",
" 3436.0 | \n",
" 11.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 3 | \n",
" AMC Rebel SST | \n",
" 16.0 | \n",
" 8 | \n",
" 304.0 | \n",
" 150.0 | \n",
" 3433.0 | \n",
" 12.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 4 | \n",
" Ford Torino | \n",
" 17.0 | \n",
" 8 | \n",
" 302.0 | \n",
" 140.0 | \n",
" 3449.0 | \n",
" 10.5 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
" 5 | \n",
" Ford Galaxie 500 | \n",
" 15.0 | \n",
" 8 | \n",
" 429.0 | \n",
" 198.0 | \n",
" 4341.0 | \n",
" 10.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Car MPG Cylinders Displacement Horsepower \\\n",
"0 Chevrolet Chevelle Malibu 18.0 8 307.0 130.0 \n",
"1 Buick Skylark 320 15.0 8 350.0 165.0 \n",
"2 Plymouth Satellite 18.0 8 318.0 150.0 \n",
"3 AMC Rebel SST 16.0 8 304.0 150.0 \n",
"4 Ford Torino 17.0 8 302.0 140.0 \n",
"5 Ford Galaxie 500 15.0 8 429.0 198.0 \n",
"\n",
" Weight Acceleration Model Origin \n",
"0 3504.0 12.0 70 US \n",
"1 3693.0 11.5 70 US \n",
"2 3436.0 11.0 70 US \n",
"3 3433.0 12.0 70 US \n",
"4 3449.0 10.5 70 US \n",
"5 4341.0 10.0 70 US "
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_csv[:6:] # dohvat prvih 5, kao i metoda head()"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "052a6613",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Car | \n",
" MPG | \n",
" Cylinders | \n",
" Displacement | \n",
" Horsepower | \n",
" Weight | \n",
" Acceleration | \n",
" Model | \n",
" Origin | \n",
"
\n",
" \n",
" \n",
" \n",
" 3 | \n",
" AMC Rebel SST | \n",
" 16.0 | \n",
" 8 | \n",
" 304.0 | \n",
" 150.0 | \n",
" 3433.0 | \n",
" 12.0 | \n",
" 70 | \n",
" US | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Car MPG Cylinders Displacement Horsepower Weight \\\n",
"3 AMC Rebel SST 16.0 8 304.0 150.0 3433.0 \n",
"\n",
" Acceleration Model Origin \n",
"3 12.0 70 US "
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars_csv[3:4]"
]
},
{
"cell_type": "markdown",
"id": "75568cef",
"metadata": {},
"source": [
"Datoteku _airbnb_new_york_city_listings.csv_ pročitati kao DataFrame \n",
"ispisati stupce, tipove podataka\n",
"+ pretvoriti podatke u stupcu _price_ u float64\n",
"+ izdvojiti retke od 5000 do 10000\n"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "2a65b41c",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" name | \n",
" host_id | \n",
" host_name | \n",
" neighbourhood_group | \n",
" neighbourhood | \n",
" latitude | \n",
" longitude | \n",
" room_type | \n",
" price | \n",
" minimum_nights | \n",
" number_of_reviews | \n",
" last_review | \n",
" reviews_per_month | \n",
" calculated_host_listings_count | \n",
" availability_365 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2595 | \n",
" Skylit Midtown Castle | \n",
" 2845 | \n",
" Jennifer | \n",
" Manhattan | \n",
" Midtown | \n",
" 40.753560 | \n",
" -73.985590 | \n",
" Entire home/apt | \n",
" 150 | \n",
" 30 | \n",
" 48 | \n",
" 2019-11-04 | \n",
" 0.34 | \n",
" 3 | \n",
" 341 | \n",
"
\n",
" \n",
" 1 | \n",
" 3831 | \n",
" Whole flr w/private bdrm, bath & kitchen(pls r... | \n",
" 4869 | \n",
" LisaRoxanne | \n",
" Brooklyn | \n",
" Bedford-Stuyvesant | \n",
" 40.684940 | \n",
" -73.957650 | \n",
" Entire home/apt | \n",
" 75 | \n",
" 1 | \n",
" 408 | \n",
" 2021-06-29 | \n",
" 5.09 | \n",
" 1 | \n",
" 212 | \n",
"
\n",
" \n",
" 2 | \n",
" 5121 | \n",
" BlissArtsSpace! | \n",
" 7356 | \n",
" Garon | \n",
" Brooklyn | \n",
" Bedford-Stuyvesant | \n",
" 40.685350 | \n",
" -73.955120 | \n",
" Private room | \n",
" 60 | \n",
" 30 | \n",
" 50 | \n",
" 2016-06-05 | \n",
" 0.55 | \n",
" 1 | \n",
" 365 | \n",
"
\n",
" \n",
" 3 | \n",
" 5136 | \n",
" Spacious Brooklyn Duplex, Patio + Garden | \n",
" 7378 | \n",
" Rebecca | \n",
" Brooklyn | \n",
" Sunset Park | \n",
" 40.662650 | \n",
" -73.994540 | \n",
" Entire home/apt | \n",
" 275 | \n",
" 5 | \n",
" 1 | \n",
" 2014-01-02 | \n",
" 0.01 | \n",
" 1 | \n",
" 184 | \n",
"
\n",
" \n",
" 4 | \n",
" 5178 | \n",
" Large Furnished Room Near B'way | \n",
" 8967 | \n",
" Shunichi | \n",
" Manhattan | \n",
" Midtown | \n",
" 40.764570 | \n",
" -73.983170 | \n",
" Private room | \n",
" 61 | \n",
" 2 | \n",
" 485 | \n",
" 2021-07-18 | \n",
" 3.63 | \n",
" 1 | \n",
" 255 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 36719 | \n",
" 51447515 | \n",
" Gorgeous 2 Bedroom - in Prime Midtown East | \n",
" 51589519 | \n",
" Asi | \n",
" Manhattan | \n",
" Midtown | \n",
" 40.755787 | \n",
" -73.965126 | \n",
" Entire home/apt | \n",
" 255 | \n",
" 31 | \n",
" 0 | \n",
" NaN | \n",
" NaN | \n",
" 6 | \n",
" 364 | \n",
"
\n",
" \n",
" 36720 | \n",
" 51449962 | \n",
" Charming UWS 1-bdrm, 1-office, 1/2 block to Ct... | \n",
" 2971741 | \n",
" Dina Marie | \n",
" Manhattan | \n",
" Upper West Side | \n",
" 40.787029 | \n",
" -73.969239 | \n",
" Entire home/apt | \n",
" 306 | \n",
" 5 | \n",
" 0 | \n",
" NaN | \n",
" NaN | \n",
" 1 | \n",
" 16 | \n",
"
\n",
" \n",
" 36721 | \n",
" 51450816 | \n",
" The Hunter IIII | \n",
" 61391963 | \n",
" Stay With Vibe | \n",
" Manhattan | \n",
" Upper East Side | \n",
" 40.768950 | \n",
" -73.960455 | \n",
" Entire home/apt | \n",
" 63 | \n",
" 30 | \n",
" 0 | \n",
" NaN | \n",
" NaN | \n",
" 96 | \n",
" 334 | \n",
"
\n",
" \n",
" 36722 | \n",
" 51451029 | \n",
" Rockaway Beach Surf Getaway | \n",
" 10123226 | \n",
" Chase | \n",
" Queens | \n",
" Arverne | \n",
" 40.599257 | \n",
" -73.797953 | \n",
" Private room | \n",
" 75 | \n",
" 1 | \n",
" 0 | \n",
" NaN | \n",
" NaN | \n",
" 1 | \n",
" 87 | \n",
"
\n",
" \n",
" 36723 | \n",
" 51451368 | \n",
" Nyc apt in the middle in nyc | \n",
" 17770287 | \n",
" Nina | \n",
" Manhattan | \n",
" Murray Hill | \n",
" 40.748655 | \n",
" -73.981209 | \n",
" Entire home/apt | \n",
" 115 | \n",
" 30 | \n",
" 0 | \n",
" NaN | \n",
" NaN | \n",
" 11 | \n",
" 364 | \n",
"
\n",
" \n",
"
\n",
"
36724 rows × 16 columns
\n",
"
"
],
"text/plain": [
" id name host_id \\\n",
"0 2595 Skylit Midtown Castle 2845 \n",
"1 3831 Whole flr w/private bdrm, bath & kitchen(pls r... 4869 \n",
"2 5121 BlissArtsSpace! 7356 \n",
"3 5136 Spacious Brooklyn Duplex, Patio + Garden 7378 \n",
"4 5178 Large Furnished Room Near B'way 8967 \n",
"... ... ... ... \n",
"36719 51447515 Gorgeous 2 Bedroom - in Prime Midtown East 51589519 \n",
"36720 51449962 Charming UWS 1-bdrm, 1-office, 1/2 block to Ct... 2971741 \n",
"36721 51450816 The Hunter IIII 61391963 \n",
"36722 51451029 Rockaway Beach Surf Getaway 10123226 \n",
"36723 51451368 Nyc apt in the middle in nyc 17770287 \n",
"\n",
" host_name neighbourhood_group neighbourhood latitude \\\n",
"0 Jennifer Manhattan Midtown 40.753560 \n",
"1 LisaRoxanne Brooklyn Bedford-Stuyvesant 40.684940 \n",
"2 Garon Brooklyn Bedford-Stuyvesant 40.685350 \n",
"3 Rebecca Brooklyn Sunset Park 40.662650 \n",
"4 Shunichi Manhattan Midtown 40.764570 \n",
"... ... ... ... ... \n",
"36719 Asi Manhattan Midtown 40.755787 \n",
"36720 Dina Marie Manhattan Upper West Side 40.787029 \n",
"36721 Stay With Vibe Manhattan Upper East Side 40.768950 \n",
"36722 Chase Queens Arverne 40.599257 \n",
"36723 Nina Manhattan Murray Hill 40.748655 \n",
"\n",
" longitude room_type price minimum_nights number_of_reviews \\\n",
"0 -73.985590 Entire home/apt 150 30 48 \n",
"1 -73.957650 Entire home/apt 75 1 408 \n",
"2 -73.955120 Private room 60 30 50 \n",
"3 -73.994540 Entire home/apt 275 5 1 \n",
"4 -73.983170 Private room 61 2 485 \n",
"... ... ... ... ... ... \n",
"36719 -73.965126 Entire home/apt 255 31 0 \n",
"36720 -73.969239 Entire home/apt 306 5 0 \n",
"36721 -73.960455 Entire home/apt 63 30 0 \n",
"36722 -73.797953 Private room 75 1 0 \n",
"36723 -73.981209 Entire home/apt 115 30 0 \n",
"\n",
" last_review reviews_per_month calculated_host_listings_count \\\n",
"0 2019-11-04 0.34 3 \n",
"1 2021-06-29 5.09 1 \n",
"2 2016-06-05 0.55 1 \n",
"3 2014-01-02 0.01 1 \n",
"4 2021-07-18 3.63 1 \n",
"... ... ... ... \n",
"36719 NaN NaN 6 \n",
"36720 NaN NaN 1 \n",
"36721 NaN NaN 96 \n",
"36722 NaN NaN 1 \n",
"36723 NaN NaN 11 \n",
"\n",
" availability_365 \n",
"0 341 \n",
"1 212 \n",
"2 365 \n",
"3 184 \n",
"4 255 \n",
"... ... \n",
"36719 364 \n",
"36720 16 \n",
"36721 334 \n",
"36722 87 \n",
"36723 364 \n",
"\n",
"[36724 rows x 16 columns]"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"listings_df = pd.read_csv('airbnb_new_york_city_listings.csv')\n",
"listings_df"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "21abd487",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['id', 'name', 'host_id', 'host_name', 'neighbourhood_group',\n",
" 'neighbourhood', 'latitude', 'longitude', 'room_type', 'price',\n",
" 'minimum_nights', 'number_of_reviews', 'last_review',\n",
" 'reviews_per_month', 'calculated_host_listings_count',\n",
" 'availability_365'],\n",
" dtype='object')"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"listings_df.columns"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "eea0a3b1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"id int64\n",
"name object\n",
"host_id int64\n",
"host_name object\n",
"neighbourhood_group object\n",
"neighbourhood object\n",
"latitude float64\n",
"longitude float64\n",
"room_type object\n",
"price int64\n",
"minimum_nights int64\n",
"number_of_reviews int64\n",
"last_review object\n",
"reviews_per_month float64\n",
"calculated_host_listings_count int64\n",
"availability_365 int64\n",
"dtype: object"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"listings_df.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 51,
"id": "25f7365f",
"metadata": {},
"outputs": [],
"source": [
"listings_df['price'] = listings_df['price'].astype('float64')"
]
},
{
"cell_type": "code",
"execution_count": 52,
"id": "86105bba",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"id int64\n",
"name object\n",
"host_id int64\n",
"host_name object\n",
"neighbourhood_group object\n",
"neighbourhood object\n",
"latitude float64\n",
"longitude float64\n",
"room_type object\n",
"price float64\n",
"minimum_nights int64\n",
"number_of_reviews int64\n",
"last_review object\n",
"reviews_per_month float64\n",
"calculated_host_listings_count int64\n",
"availability_365 int64\n",
"dtype: object"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"listings_df.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 54,
"id": "52ef94d2",
"metadata": {},
"outputs": [],
"source": [
"listings_df['last_review'] = listings_df['last_review'].astype('datetime64[ns]')"
]
},
{
"cell_type": "code",
"execution_count": 55,
"id": "2d88d55d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"id int64\n",
"name object\n",
"host_id int64\n",
"host_name object\n",
"neighbourhood_group object\n",
"neighbourhood object\n",
"latitude float64\n",
"longitude float64\n",
"room_type object\n",
"price float64\n",
"minimum_nights int64\n",
"number_of_reviews int64\n",
"last_review datetime64[ns]\n",
"reviews_per_month float64\n",
"calculated_host_listings_count int64\n",
"availability_365 int64\n",
"dtype: object"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"listings_df.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 56,
"id": "33e159a1",
"metadata": {},
"outputs": [],
"source": [
"listings_df['last_review'] = pd.to_datetime(listings_df['last_review'])"
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "93c4cf28",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" name | \n",
" host_id | \n",
" host_name | \n",
" neighbourhood_group | \n",
" neighbourhood | \n",
" latitude | \n",
" longitude | \n",
" room_type | \n",
" price | \n",
" minimum_nights | \n",
" number_of_reviews | \n",
" last_review | \n",
" reviews_per_month | \n",
" calculated_host_listings_count | \n",
" availability_365 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2595 | \n",
" Skylit Midtown Castle | \n",
" 2845 | \n",
" Jennifer | \n",
" Manhattan | \n",
" Midtown | \n",
" 40.753560 | \n",
" -73.985590 | \n",
" Entire home/apt | \n",
" 150.0 | \n",
" 30 | \n",
" 48 | \n",
" 2019-11-04 | \n",
" 0.34 | \n",
" 3 | \n",
" 341 | \n",
"
\n",
" \n",
" 1 | \n",
" 3831 | \n",
" Whole flr w/private bdrm, bath & kitchen(pls r... | \n",
" 4869 | \n",
" LisaRoxanne | \n",
" Brooklyn | \n",
" Bedford-Stuyvesant | \n",
" 40.684940 | \n",
" -73.957650 | \n",
" Entire home/apt | \n",
" 75.0 | \n",
" 1 | \n",
" 408 | \n",
" 2021-06-29 | \n",
" 5.09 | \n",
" 1 | \n",
" 212 | \n",
"
\n",
" \n",
" 2 | \n",
" 5121 | \n",
" BlissArtsSpace! | \n",
" 7356 | \n",
" Garon | \n",
" Brooklyn | \n",
" Bedford-Stuyvesant | \n",
" 40.685350 | \n",
" -73.955120 | \n",
" Private room | \n",
" 60.0 | \n",
" 30 | \n",
" 50 | \n",
" 2016-06-05 | \n",
" 0.55 | \n",
" 1 | \n",
" 365 | \n",
"
\n",
" \n",
" 3 | \n",
" 5136 | \n",
" Spacious Brooklyn Duplex, Patio + Garden | \n",
" 7378 | \n",
" Rebecca | \n",
" Brooklyn | \n",
" Sunset Park | \n",
" 40.662650 | \n",
" -73.994540 | \n",
" Entire home/apt | \n",
" 275.0 | \n",
" 5 | \n",
" 1 | \n",
" 2014-01-02 | \n",
" 0.01 | \n",
" 1 | \n",
" 184 | \n",
"
\n",
" \n",
" 4 | \n",
" 5178 | \n",
" Large Furnished Room Near B'way | \n",
" 8967 | \n",
" Shunichi | \n",
" Manhattan | \n",
" Midtown | \n",
" 40.764570 | \n",
" -73.983170 | \n",
" Private room | \n",
" 61.0 | \n",
" 2 | \n",
" 485 | \n",
" 2021-07-18 | \n",
" 3.63 | \n",
" 1 | \n",
" 255 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 36719 | \n",
" 51447515 | \n",
" Gorgeous 2 Bedroom - in Prime Midtown East | \n",
" 51589519 | \n",
" Asi | \n",
" Manhattan | \n",
" Midtown | \n",
" 40.755787 | \n",
" -73.965126 | \n",
" Entire home/apt | \n",
" 255.0 | \n",
" 31 | \n",
" 0 | \n",
" NaT | \n",
" NaN | \n",
" 6 | \n",
" 364 | \n",
"
\n",
" \n",
" 36720 | \n",
" 51449962 | \n",
" Charming UWS 1-bdrm, 1-office, 1/2 block to Ct... | \n",
" 2971741 | \n",
" Dina Marie | \n",
" Manhattan | \n",
" Upper West Side | \n",
" 40.787029 | \n",
" -73.969239 | \n",
" Entire home/apt | \n",
" 306.0 | \n",
" 5 | \n",
" 0 | \n",
" NaT | \n",
" NaN | \n",
" 1 | \n",
" 16 | \n",
"
\n",
" \n",
" 36721 | \n",
" 51450816 | \n",
" The Hunter IIII | \n",
" 61391963 | \n",
" Stay With Vibe | \n",
" Manhattan | \n",
" Upper East Side | \n",
" 40.768950 | \n",
" -73.960455 | \n",
" Entire home/apt | \n",
" 63.0 | \n",
" 30 | \n",
" 0 | \n",
" NaT | \n",
" NaN | \n",
" 96 | \n",
" 334 | \n",
"
\n",
" \n",
" 36722 | \n",
" 51451029 | \n",
" Rockaway Beach Surf Getaway | \n",
" 10123226 | \n",
" Chase | \n",
" Queens | \n",
" Arverne | \n",
" 40.599257 | \n",
" -73.797953 | \n",
" Private room | \n",
" 75.0 | \n",
" 1 | \n",
" 0 | \n",
" NaT | \n",
" NaN | \n",
" 1 | \n",
" 87 | \n",
"
\n",
" \n",
" 36723 | \n",
" 51451368 | \n",
" Nyc apt in the middle in nyc | \n",
" 17770287 | \n",
" Nina | \n",
" Manhattan | \n",
" Murray Hill | \n",
" 40.748655 | \n",
" -73.981209 | \n",
" Entire home/apt | \n",
" 115.0 | \n",
" 30 | \n",
" 0 | \n",
" NaT | \n",
" NaN | \n",
" 11 | \n",
" 364 | \n",
"
\n",
" \n",
"
\n",
"
36724 rows × 16 columns
\n",
"
"
],
"text/plain": [
" id name host_id \\\n",
"0 2595 Skylit Midtown Castle 2845 \n",
"1 3831 Whole flr w/private bdrm, bath & kitchen(pls r... 4869 \n",
"2 5121 BlissArtsSpace! 7356 \n",
"3 5136 Spacious Brooklyn Duplex, Patio + Garden 7378 \n",
"4 5178 Large Furnished Room Near B'way 8967 \n",
"... ... ... ... \n",
"36719 51447515 Gorgeous 2 Bedroom - in Prime Midtown East 51589519 \n",
"36720 51449962 Charming UWS 1-bdrm, 1-office, 1/2 block to Ct... 2971741 \n",
"36721 51450816 The Hunter IIII 61391963 \n",
"36722 51451029 Rockaway Beach Surf Getaway 10123226 \n",
"36723 51451368 Nyc apt in the middle in nyc 17770287 \n",
"\n",
" host_name neighbourhood_group neighbourhood latitude \\\n",
"0 Jennifer Manhattan Midtown 40.753560 \n",
"1 LisaRoxanne Brooklyn Bedford-Stuyvesant 40.684940 \n",
"2 Garon Brooklyn Bedford-Stuyvesant 40.685350 \n",
"3 Rebecca Brooklyn Sunset Park 40.662650 \n",
"4 Shunichi Manhattan Midtown 40.764570 \n",
"... ... ... ... ... \n",
"36719 Asi Manhattan Midtown 40.755787 \n",
"36720 Dina Marie Manhattan Upper West Side 40.787029 \n",
"36721 Stay With Vibe Manhattan Upper East Side 40.768950 \n",
"36722 Chase Queens Arverne 40.599257 \n",
"36723 Nina Manhattan Murray Hill 40.748655 \n",
"\n",
" longitude room_type price minimum_nights number_of_reviews \\\n",
"0 -73.985590 Entire home/apt 150.0 30 48 \n",
"1 -73.957650 Entire home/apt 75.0 1 408 \n",
"2 -73.955120 Private room 60.0 30 50 \n",
"3 -73.994540 Entire home/apt 275.0 5 1 \n",
"4 -73.983170 Private room 61.0 2 485 \n",
"... ... ... ... ... ... \n",
"36719 -73.965126 Entire home/apt 255.0 31 0 \n",
"36720 -73.969239 Entire home/apt 306.0 5 0 \n",
"36721 -73.960455 Entire home/apt 63.0 30 0 \n",
"36722 -73.797953 Private room 75.0 1 0 \n",
"36723 -73.981209 Entire home/apt 115.0 30 0 \n",
"\n",
" last_review reviews_per_month calculated_host_listings_count \\\n",
"0 2019-11-04 0.34 3 \n",
"1 2021-06-29 5.09 1 \n",
"2 2016-06-05 0.55 1 \n",
"3 2014-01-02 0.01 1 \n",
"4 2021-07-18 3.63 1 \n",
"... ... ... ... \n",
"36719 NaT NaN 6 \n",
"36720 NaT NaN 1 \n",
"36721 NaT NaN 96 \n",
"36722 NaT NaN 1 \n",
"36723 NaT NaN 11 \n",
"\n",
" availability_365 \n",
"0 341 \n",
"1 212 \n",
"2 365 \n",
"3 184 \n",
"4 255 \n",
"... ... \n",
"36719 364 \n",
"36720 16 \n",
"36721 334 \n",
"36722 87 \n",
"36723 364 \n",
"\n",
"[36724 rows x 16 columns]"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"listings_df"
]
},
{
"cell_type": "code",
"execution_count": 74,
"id": "2a46e7ae",
"metadata": {},
"outputs": [],
"source": [
"listings_df['last_review_year'] = listings_df['last_review'].dt.year"
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "142cbe58",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"id int64\n",
"name object\n",
"host_id int64\n",
"host_name object\n",
"neighbourhood_group object\n",
"neighbourhood object\n",
"latitude float64\n",
"longitude float64\n",
"room_type object\n",
"price float64\n",
"minimum_nights int64\n",
"number_of_reviews int64\n",
"last_review datetime64[ns]\n",
"reviews_per_month float64\n",
"calculated_host_listings_count int64\n",
"availability_365 int64\n",
"last_review_year float64\n",
"dtype: object"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"listings_df.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 75,
"id": "845445dc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"id int64\n",
"name object\n",
"host_id int64\n",
"host_name object\n",
"neighbourhood_group object\n",
"neighbourhood object\n",
"latitude float64\n",
"longitude float64\n",
"room_type object\n",
"price float64\n",
"minimum_nights int64\n",
"number_of_reviews int64\n",
"last_review datetime64[ns]\n",
"reviews_per_month float64\n",
"calculated_host_listings_count int64\n",
"availability_365 int64\n",
"last_review_year int32\n",
"dtype: object"
]
},
"execution_count": 75,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"listings_df['last_review_year']=listings_df['last_review_year'].astype('int')\n",
"listings_df.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 62,
"id": "cefcf5e2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"listings_df.empty"
]
},
{
"cell_type": "code",
"execution_count": 63,
"id": "d742a6b3",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" name | \n",
" host_id | \n",
" host_name | \n",
" neighbourhood_group | \n",
" neighbourhood | \n",
" latitude | \n",
" longitude | \n",
" room_type | \n",
" price | \n",
" minimum_nights | \n",
" number_of_reviews | \n",
" last_review | \n",
" reviews_per_month | \n",
" calculated_host_listings_count | \n",
" availability_365 | \n",
" last_review_year | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" 1 | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" 2 | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" 3 | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" 4 | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 36719 | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" True | \n",
" True | \n",
" False | \n",
" False | \n",
" True | \n",
"
\n",
" \n",
" 36720 | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" True | \n",
" True | \n",
" False | \n",
" False | \n",
" True | \n",
"
\n",
" \n",
" 36721 | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" True | \n",
" True | \n",
" False | \n",
" False | \n",
" True | \n",
"
\n",
" \n",
" 36722 | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" True | \n",
" True | \n",
" False | \n",
" False | \n",
" True | \n",
"
\n",
" \n",
" 36723 | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" True | \n",
" True | \n",
" False | \n",
" False | \n",
" True | \n",
"
\n",
" \n",
"
\n",
"
36724 rows × 17 columns
\n",
"
"
],
"text/plain": [
" id name host_id host_name neighbourhood_group neighbourhood \\\n",
"0 False False False False False False \n",
"1 False False False False False False \n",
"2 False False False False False False \n",
"3 False False False False False False \n",
"4 False False False False False False \n",
"... ... ... ... ... ... ... \n",
"36719 False False False False False False \n",
"36720 False False False False False False \n",
"36721 False False False False False False \n",
"36722 False False False False False False \n",
"36723 False False False False False False \n",
"\n",
" latitude longitude room_type price minimum_nights \\\n",
"0 False False False False False \n",
"1 False False False False False \n",
"2 False False False False False \n",
"3 False False False False False \n",
"4 False False False False False \n",
"... ... ... ... ... ... \n",
"36719 False False False False False \n",
"36720 False False False False False \n",
"36721 False False False False False \n",
"36722 False False False False False \n",
"36723 False False False False False \n",
"\n",
" number_of_reviews last_review reviews_per_month \\\n",
"0 False False False \n",
"1 False False False \n",
"2 False False False \n",
"3 False False False \n",
"4 False False False \n",
"... ... ... ... \n",
"36719 False True True \n",
"36720 False True True \n",
"36721 False True True \n",
"36722 False True True \n",
"36723 False True True \n",
"\n",
" calculated_host_listings_count availability_365 last_review_year \n",
"0 False False False \n",
"1 False False False \n",
"2 False False False \n",
"3 False False False \n",
"4 False False False \n",
"... ... ... ... \n",
"36719 False False True \n",
"36720 False False True \n",
"36721 False False True \n",
"36722 False False True \n",
"36723 False False True \n",
"\n",
"[36724 rows x 17 columns]"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"listings_df.isnull()"
]
},
{
"cell_type": "code",
"execution_count": 64,
"id": "ee870279",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"id 0\n",
"name 13\n",
"host_id 0\n",
"host_name 23\n",
"neighbourhood_group 0\n",
"neighbourhood 0\n",
"latitude 0\n",
"longitude 0\n",
"room_type 0\n",
"price 0\n",
"minimum_nights 0\n",
"number_of_reviews 0\n",
"last_review 9415\n",
"reviews_per_month 9415\n",
"calculated_host_listings_count 0\n",
"availability_365 0\n",
"last_review_year 9415\n",
"dtype: int64"
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"listings_df.isnull().sum()"
]
},
{
"cell_type": "markdown",
"id": "d9de51c7",
"metadata": {},
"source": [
"**Popunjavanje praznih ćelija** \n",
"+ 'name': 'No Name Listed'\n",
"+ 'host_name': 'J. Doe'\n",
"+ 'last_review': 1970-01-01 (Početak UNIX vremena)\n",
"+ 'reviews_per_month': 0.0\n",
"+ 'last_review_year': 0.0"
]
},
{
"cell_type": "code",
"execution_count": 65,
"id": "b5a4c3c2",
"metadata": {},
"outputs": [],
"source": [
"listings_df['name'].fillna('No Name Listed', inplace=True)\n",
"listings_df['host_name'].fillna('J. Doe', inplace=True)\n",
"listings_df['last_review'].fillna('1970-01-01', inplace=True)\n",
"listings_df['reviews_per_month'].fillna(0.0, inplace=True)\n",
"listings_df['last_review_year'].fillna(0.0, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 66,
"id": "4d79f7a1",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" name | \n",
" host_id | \n",
" host_name | \n",
" neighbourhood_group | \n",
" neighbourhood | \n",
" latitude | \n",
" longitude | \n",
" room_type | \n",
" price | \n",
" minimum_nights | \n",
" number_of_reviews | \n",
" last_review | \n",
" reviews_per_month | \n",
" calculated_host_listings_count | \n",
" availability_365 | \n",
" last_review_year | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2595 | \n",
" Skylit Midtown Castle | \n",
" 2845 | \n",
" Jennifer | \n",
" Manhattan | \n",
" Midtown | \n",
" 40.753560 | \n",
" -73.985590 | \n",
" Entire home/apt | \n",
" 150.0 | \n",
" 30 | \n",
" 48 | \n",
" 2019-11-04 | \n",
" 0.34 | \n",
" 3 | \n",
" 341 | \n",
" 2019.0 | \n",
"
\n",
" \n",
" 1 | \n",
" 3831 | \n",
" Whole flr w/private bdrm, bath & kitchen(pls r... | \n",
" 4869 | \n",
" LisaRoxanne | \n",
" Brooklyn | \n",
" Bedford-Stuyvesant | \n",
" 40.684940 | \n",
" -73.957650 | \n",
" Entire home/apt | \n",
" 75.0 | \n",
" 1 | \n",
" 408 | \n",
" 2021-06-29 | \n",
" 5.09 | \n",
" 1 | \n",
" 212 | \n",
" 2021.0 | \n",
"
\n",
" \n",
" 2 | \n",
" 5121 | \n",
" BlissArtsSpace! | \n",
" 7356 | \n",
" Garon | \n",
" Brooklyn | \n",
" Bedford-Stuyvesant | \n",
" 40.685350 | \n",
" -73.955120 | \n",
" Private room | \n",
" 60.0 | \n",
" 30 | \n",
" 50 | \n",
" 2016-06-05 | \n",
" 0.55 | \n",
" 1 | \n",
" 365 | \n",
" 2016.0 | \n",
"
\n",
" \n",
" 3 | \n",
" 5136 | \n",
" Spacious Brooklyn Duplex, Patio + Garden | \n",
" 7378 | \n",
" Rebecca | \n",
" Brooklyn | \n",
" Sunset Park | \n",
" 40.662650 | \n",
" -73.994540 | \n",
" Entire home/apt | \n",
" 275.0 | \n",
" 5 | \n",
" 1 | \n",
" 2014-01-02 | \n",
" 0.01 | \n",
" 1 | \n",
" 184 | \n",
" 2014.0 | \n",
"
\n",
" \n",
" 4 | \n",
" 5178 | \n",
" Large Furnished Room Near B'way | \n",
" 8967 | \n",
" Shunichi | \n",
" Manhattan | \n",
" Midtown | \n",
" 40.764570 | \n",
" -73.983170 | \n",
" Private room | \n",
" 61.0 | \n",
" 2 | \n",
" 485 | \n",
" 2021-07-18 | \n",
" 3.63 | \n",
" 1 | \n",
" 255 | \n",
" 2021.0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 36719 | \n",
" 51447515 | \n",
" Gorgeous 2 Bedroom - in Prime Midtown East | \n",
" 51589519 | \n",
" Asi | \n",
" Manhattan | \n",
" Midtown | \n",
" 40.755787 | \n",
" -73.965126 | \n",
" Entire home/apt | \n",
" 255.0 | \n",
" 31 | \n",
" 0 | \n",
" 1970-01-01 | \n",
" 0.00 | \n",
" 6 | \n",
" 364 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 36720 | \n",
" 51449962 | \n",
" Charming UWS 1-bdrm, 1-office, 1/2 block to Ct... | \n",
" 2971741 | \n",
" Dina Marie | \n",
" Manhattan | \n",
" Upper West Side | \n",
" 40.787029 | \n",
" -73.969239 | \n",
" Entire home/apt | \n",
" 306.0 | \n",
" 5 | \n",
" 0 | \n",
" 1970-01-01 | \n",
" 0.00 | \n",
" 1 | \n",
" 16 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 36721 | \n",
" 51450816 | \n",
" The Hunter IIII | \n",
" 61391963 | \n",
" Stay With Vibe | \n",
" Manhattan | \n",
" Upper East Side | \n",
" 40.768950 | \n",
" -73.960455 | \n",
" Entire home/apt | \n",
" 63.0 | \n",
" 30 | \n",
" 0 | \n",
" 1970-01-01 | \n",
" 0.00 | \n",
" 96 | \n",
" 334 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 36722 | \n",
" 51451029 | \n",
" Rockaway Beach Surf Getaway | \n",
" 10123226 | \n",
" Chase | \n",
" Queens | \n",
" Arverne | \n",
" 40.599257 | \n",
" -73.797953 | \n",
" Private room | \n",
" 75.0 | \n",
" 1 | \n",
" 0 | \n",
" 1970-01-01 | \n",
" 0.00 | \n",
" 1 | \n",
" 87 | \n",
" 0.0 | \n",
"
\n",
" \n",
" 36723 | \n",
" 51451368 | \n",
" Nyc apt in the middle in nyc | \n",
" 17770287 | \n",
" Nina | \n",
" Manhattan | \n",
" Murray Hill | \n",
" 40.748655 | \n",
" -73.981209 | \n",
" Entire home/apt | \n",
" 115.0 | \n",
" 30 | \n",
" 0 | \n",
" 1970-01-01 | \n",
" 0.00 | \n",
" 11 | \n",
" 364 | \n",
" 0.0 | \n",
"
\n",
" \n",
"
\n",
"
36724 rows × 17 columns
\n",
"
"
],
"text/plain": [
" id name host_id \\\n",
"0 2595 Skylit Midtown Castle 2845 \n",
"1 3831 Whole flr w/private bdrm, bath & kitchen(pls r... 4869 \n",
"2 5121 BlissArtsSpace! 7356 \n",
"3 5136 Spacious Brooklyn Duplex, Patio + Garden 7378 \n",
"4 5178 Large Furnished Room Near B'way 8967 \n",
"... ... ... ... \n",
"36719 51447515 Gorgeous 2 Bedroom - in Prime Midtown East 51589519 \n",
"36720 51449962 Charming UWS 1-bdrm, 1-office, 1/2 block to Ct... 2971741 \n",
"36721 51450816 The Hunter IIII 61391963 \n",
"36722 51451029 Rockaway Beach Surf Getaway 10123226 \n",
"36723 51451368 Nyc apt in the middle in nyc 17770287 \n",
"\n",
" host_name neighbourhood_group neighbourhood latitude \\\n",
"0 Jennifer Manhattan Midtown 40.753560 \n",
"1 LisaRoxanne Brooklyn Bedford-Stuyvesant 40.684940 \n",
"2 Garon Brooklyn Bedford-Stuyvesant 40.685350 \n",
"3 Rebecca Brooklyn Sunset Park 40.662650 \n",
"4 Shunichi Manhattan Midtown 40.764570 \n",
"... ... ... ... ... \n",
"36719 Asi Manhattan Midtown 40.755787 \n",
"36720 Dina Marie Manhattan Upper West Side 40.787029 \n",
"36721 Stay With Vibe Manhattan Upper East Side 40.768950 \n",
"36722 Chase Queens Arverne 40.599257 \n",
"36723 Nina Manhattan Murray Hill 40.748655 \n",
"\n",
" longitude room_type price minimum_nights number_of_reviews \\\n",
"0 -73.985590 Entire home/apt 150.0 30 48 \n",
"1 -73.957650 Entire home/apt 75.0 1 408 \n",
"2 -73.955120 Private room 60.0 30 50 \n",
"3 -73.994540 Entire home/apt 275.0 5 1 \n",
"4 -73.983170 Private room 61.0 2 485 \n",
"... ... ... ... ... ... \n",
"36719 -73.965126 Entire home/apt 255.0 31 0 \n",
"36720 -73.969239 Entire home/apt 306.0 5 0 \n",
"36721 -73.960455 Entire home/apt 63.0 30 0 \n",
"36722 -73.797953 Private room 75.0 1 0 \n",
"36723 -73.981209 Entire home/apt 115.0 30 0 \n",
"\n",
" last_review reviews_per_month calculated_host_listings_count \\\n",
"0 2019-11-04 0.34 3 \n",
"1 2021-06-29 5.09 1 \n",
"2 2016-06-05 0.55 1 \n",
"3 2014-01-02 0.01 1 \n",
"4 2021-07-18 3.63 1 \n",
"... ... ... ... \n",
"36719 1970-01-01 0.00 6 \n",
"36720 1970-01-01 0.00 1 \n",
"36721 1970-01-01 0.00 96 \n",
"36722 1970-01-01 0.00 1 \n",
"36723 1970-01-01 0.00 11 \n",
"\n",
" availability_365 last_review_year \n",
"0 341 2019.0 \n",
"1 212 2021.0 \n",
"2 365 2016.0 \n",
"3 184 2014.0 \n",
"4 255 2021.0 \n",
"... ... ... \n",
"36719 364 0.0 \n",
"36720 16 0.0 \n",
"36721 334 0.0 \n",
"36722 87 0.0 \n",
"36723 364 0.0 \n",
"\n",
"[36724 rows x 17 columns]"
]
},
"execution_count": 66,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"listings_df"
]
},
{
"cell_type": "code",
"execution_count": 67,
"id": "40e290cd",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"id 0\n",
"name 0\n",
"host_id 0\n",
"host_name 0\n",
"neighbourhood_group 0\n",
"neighbourhood 0\n",
"latitude 0\n",
"longitude 0\n",
"room_type 0\n",
"price 0\n",
"minimum_nights 0\n",
"number_of_reviews 0\n",
"last_review 0\n",
"reviews_per_month 0\n",
"calculated_host_listings_count 0\n",
"availability_365 0\n",
"last_review_year 0\n",
"dtype: int64"
]
},
"execution_count": 67,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"listings_df.isnull().sum()"
]
},
{
"cell_type": "code",
"execution_count": 69,
"id": "58d83908",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"id int64\n",
"name object\n",
"host_id int64\n",
"host_name object\n",
"neighbourhood_group object\n",
"neighbourhood object\n",
"latitude float64\n",
"longitude float64\n",
"room_type object\n",
"price float64\n",
"minimum_nights int64\n",
"number_of_reviews int64\n",
"last_review datetime64[ns]\n",
"reviews_per_month float64\n",
"calculated_host_listings_count int64\n",
"availability_365 int64\n",
"last_review_year int64\n",
"dtype: object"
]
},
"execution_count": 69,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"listings_df['last_review_year']=listings_df['last_review_year'].astype('int64')\n",
"listings_df.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 76,
"id": "313250f8",
"metadata": {},
"outputs": [],
"source": [
"last_review_year = listings_df.pop('last_review_year')\n",
"listings_df.insert(13, last_review_year.name, last_review_year)"
]
},
{
"cell_type": "code",
"execution_count": 77,
"id": "d61166b4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['id', 'name', 'host_id', 'host_name', 'neighbourhood_group',\n",
" 'neighbourhood', 'latitude', 'longitude', 'room_type', 'price',\n",
" 'minimum_nights', 'number_of_reviews', 'last_review',\n",
" 'last_review_year', 'reviews_per_month',\n",
" 'calculated_host_listings_count', 'availability_365'],\n",
" dtype='object')"
]
},
"execution_count": 77,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"listings_df.columns"
]
},
{
"cell_type": "code",
"execution_count": 78,
"id": "8eed1f37",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" name | \n",
" host_id | \n",
" host_name | \n",
" neighbourhood_group | \n",
" neighbourhood | \n",
" latitude | \n",
" longitude | \n",
" room_type | \n",
" price | \n",
" minimum_nights | \n",
" number_of_reviews | \n",
" last_review | \n",
" last_review_year | \n",
" reviews_per_month | \n",
" calculated_host_listings_count | \n",
" availability_365 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2595 | \n",
" Skylit Midtown Castle | \n",
" 2845 | \n",
" Jennifer | \n",
" Manhattan | \n",
" Midtown | \n",
" 40.753560 | \n",
" -73.985590 | \n",
" Entire home/apt | \n",
" 150.0 | \n",
" 30 | \n",
" 48 | \n",
" 2019-11-04 | \n",
" 2019 | \n",
" 0.34 | \n",
" 3 | \n",
" 341 | \n",
"
\n",
" \n",
" 1 | \n",
" 3831 | \n",
" Whole flr w/private bdrm, bath & kitchen(pls r... | \n",
" 4869 | \n",
" LisaRoxanne | \n",
" Brooklyn | \n",
" Bedford-Stuyvesant | \n",
" 40.684940 | \n",
" -73.957650 | \n",
" Entire home/apt | \n",
" 75.0 | \n",
" 1 | \n",
" 408 | \n",
" 2021-06-29 | \n",
" 2021 | \n",
" 5.09 | \n",
" 1 | \n",
" 212 | \n",
"
\n",
" \n",
" 2 | \n",
" 5121 | \n",
" BlissArtsSpace! | \n",
" 7356 | \n",
" Garon | \n",
" Brooklyn | \n",
" Bedford-Stuyvesant | \n",
" 40.685350 | \n",
" -73.955120 | \n",
" Private room | \n",
" 60.0 | \n",
" 30 | \n",
" 50 | \n",
" 2016-06-05 | \n",
" 2016 | \n",
" 0.55 | \n",
" 1 | \n",
" 365 | \n",
"
\n",
" \n",
" 3 | \n",
" 5136 | \n",
" Spacious Brooklyn Duplex, Patio + Garden | \n",
" 7378 | \n",
" Rebecca | \n",
" Brooklyn | \n",
" Sunset Park | \n",
" 40.662650 | \n",
" -73.994540 | \n",
" Entire home/apt | \n",
" 275.0 | \n",
" 5 | \n",
" 1 | \n",
" 2014-01-02 | \n",
" 2014 | \n",
" 0.01 | \n",
" 1 | \n",
" 184 | \n",
"
\n",
" \n",
" 4 | \n",
" 5178 | \n",
" Large Furnished Room Near B'way | \n",
" 8967 | \n",
" Shunichi | \n",
" Manhattan | \n",
" Midtown | \n",
" 40.764570 | \n",
" -73.983170 | \n",
" Private room | \n",
" 61.0 | \n",
" 2 | \n",
" 485 | \n",
" 2021-07-18 | \n",
" 2021 | \n",
" 3.63 | \n",
" 1 | \n",
" 255 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 36719 | \n",
" 51447515 | \n",
" Gorgeous 2 Bedroom - in Prime Midtown East | \n",
" 51589519 | \n",
" Asi | \n",
" Manhattan | \n",
" Midtown | \n",
" 40.755787 | \n",
" -73.965126 | \n",
" Entire home/apt | \n",
" 255.0 | \n",
" 31 | \n",
" 0 | \n",
" 1970-01-01 | \n",
" 1970 | \n",
" 0.00 | \n",
" 6 | \n",
" 364 | \n",
"
\n",
" \n",
" 36720 | \n",
" 51449962 | \n",
" Charming UWS 1-bdrm, 1-office, 1/2 block to Ct... | \n",
" 2971741 | \n",
" Dina Marie | \n",
" Manhattan | \n",
" Upper West Side | \n",
" 40.787029 | \n",
" -73.969239 | \n",
" Entire home/apt | \n",
" 306.0 | \n",
" 5 | \n",
" 0 | \n",
" 1970-01-01 | \n",
" 1970 | \n",
" 0.00 | \n",
" 1 | \n",
" 16 | \n",
"
\n",
" \n",
" 36721 | \n",
" 51450816 | \n",
" The Hunter IIII | \n",
" 61391963 | \n",
" Stay With Vibe | \n",
" Manhattan | \n",
" Upper East Side | \n",
" 40.768950 | \n",
" -73.960455 | \n",
" Entire home/apt | \n",
" 63.0 | \n",
" 30 | \n",
" 0 | \n",
" 1970-01-01 | \n",
" 1970 | \n",
" 0.00 | \n",
" 96 | \n",
" 334 | \n",
"
\n",
" \n",
" 36722 | \n",
" 51451029 | \n",
" Rockaway Beach Surf Getaway | \n",
" 10123226 | \n",
" Chase | \n",
" Queens | \n",
" Arverne | \n",
" 40.599257 | \n",
" -73.797953 | \n",
" Private room | \n",
" 75.0 | \n",
" 1 | \n",
" 0 | \n",
" 1970-01-01 | \n",
" 1970 | \n",
" 0.00 | \n",
" 1 | \n",
" 87 | \n",
"
\n",
" \n",
" 36723 | \n",
" 51451368 | \n",
" Nyc apt in the middle in nyc | \n",
" 17770287 | \n",
" Nina | \n",
" Manhattan | \n",
" Murray Hill | \n",
" 40.748655 | \n",
" -73.981209 | \n",
" Entire home/apt | \n",
" 115.0 | \n",
" 30 | \n",
" 0 | \n",
" 1970-01-01 | \n",
" 1970 | \n",
" 0.00 | \n",
" 11 | \n",
" 364 | \n",
"
\n",
" \n",
"
\n",
"
36724 rows × 17 columns
\n",
"
"
],
"text/plain": [
" id name host_id \\\n",
"0 2595 Skylit Midtown Castle 2845 \n",
"1 3831 Whole flr w/private bdrm, bath & kitchen(pls r... 4869 \n",
"2 5121 BlissArtsSpace! 7356 \n",
"3 5136 Spacious Brooklyn Duplex, Patio + Garden 7378 \n",
"4 5178 Large Furnished Room Near B'way 8967 \n",
"... ... ... ... \n",
"36719 51447515 Gorgeous 2 Bedroom - in Prime Midtown East 51589519 \n",
"36720 51449962 Charming UWS 1-bdrm, 1-office, 1/2 block to Ct... 2971741 \n",
"36721 51450816 The Hunter IIII 61391963 \n",
"36722 51451029 Rockaway Beach Surf Getaway 10123226 \n",
"36723 51451368 Nyc apt in the middle in nyc 17770287 \n",
"\n",
" host_name neighbourhood_group neighbourhood latitude \\\n",
"0 Jennifer Manhattan Midtown 40.753560 \n",
"1 LisaRoxanne Brooklyn Bedford-Stuyvesant 40.684940 \n",
"2 Garon Brooklyn Bedford-Stuyvesant 40.685350 \n",
"3 Rebecca Brooklyn Sunset Park 40.662650 \n",
"4 Shunichi Manhattan Midtown 40.764570 \n",
"... ... ... ... ... \n",
"36719 Asi Manhattan Midtown 40.755787 \n",
"36720 Dina Marie Manhattan Upper West Side 40.787029 \n",
"36721 Stay With Vibe Manhattan Upper East Side 40.768950 \n",
"36722 Chase Queens Arverne 40.599257 \n",
"36723 Nina Manhattan Murray Hill 40.748655 \n",
"\n",
" longitude room_type price minimum_nights number_of_reviews \\\n",
"0 -73.985590 Entire home/apt 150.0 30 48 \n",
"1 -73.957650 Entire home/apt 75.0 1 408 \n",
"2 -73.955120 Private room 60.0 30 50 \n",
"3 -73.994540 Entire home/apt 275.0 5 1 \n",
"4 -73.983170 Private room 61.0 2 485 \n",
"... ... ... ... ... ... \n",
"36719 -73.965126 Entire home/apt 255.0 31 0 \n",
"36720 -73.969239 Entire home/apt 306.0 5 0 \n",
"36721 -73.960455 Entire home/apt 63.0 30 0 \n",
"36722 -73.797953 Private room 75.0 1 0 \n",
"36723 -73.981209 Entire home/apt 115.0 30 0 \n",
"\n",
" last_review last_review_year reviews_per_month \\\n",
"0 2019-11-04 2019 0.34 \n",
"1 2021-06-29 2021 5.09 \n",
"2 2016-06-05 2016 0.55 \n",
"3 2014-01-02 2014 0.01 \n",
"4 2021-07-18 2021 3.63 \n",
"... ... ... ... \n",
"36719 1970-01-01 1970 0.00 \n",
"36720 1970-01-01 1970 0.00 \n",
"36721 1970-01-01 1970 0.00 \n",
"36722 1970-01-01 1970 0.00 \n",
"36723 1970-01-01 1970 0.00 \n",
"\n",
" calculated_host_listings_count availability_365 \n",
"0 3 341 \n",
"1 1 212 \n",
"2 1 365 \n",
"3 1 184 \n",
"4 1 255 \n",
"... ... ... \n",
"36719 6 364 \n",
"36720 1 16 \n",
"36721 96 334 \n",
"36722 1 87 \n",
"36723 11 364 \n",
"\n",
"[36724 rows x 17 columns]"
]
},
"execution_count": 78,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"listings_df "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "973b5e56",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}