
Computer architecture

Arm and Arm

architecture primer

Instruction Set Architecture

• Execute high-level languages directly.

• Execute complex instructions (CISC).

• Tailor instruction set for pipelined and high-performance
implementations. Expose the instruction pipeline to the
compiler so it can optimize code and help simplify the
hardware (RISC).
We will explore this approach.

• Provide additional explicit information about the dependencies
between instructions. E.g., VLIW or

• Specify individual data transfers, e.g., Transport Triggered
Architectures (TTA)

High-level
interface

Low-level

interface

High-level
interface

Low-level

interface

Instruction Set Architecture

• The best instruction set is the one that yields the “best”
implementation.

• Changing the instruction set is difficult and happens infrequently
.

• The factors that influence instruction set design do change over
time, e.g., applications, programming languages, compiler
technology, transistor budgets, and the underlying fabrication
technology.

• We need to take care not to include “features” that will be
regretted later.

The RISC Approach

• The RISC approach aims to ensure that we make the
common-case fast by carefully selecting the most useful
instructions and addressing modes, etc.

• Instructions are designed to make good use of the register file.

• A RISC ISA is designed to ensure a simple high-performance
implementation is possible.

Instruction Set Architecture

Common features of RISC instruction sets:

• Fixed length instruction encodings (or a small number of easily
decoded formats)

• Each instruction follows similar steps when being executed.

• Access to data memory is restricted to special load/store
instructions
(a so-called load/store architecture).

Arm1: The First Arm Processor (1985)

• Arm: Advanced RISC Machine
(Arm)

• The first Arm processor was
designed by Sophie Wilson and
Prof. Steve Furber. It was
inspired by early research
papers from Berkeley and
Stanford on RISC.

• Arm1
• 25,000 transistors
• 3-stage pipeline
• 8 MHz clock
• No on-chip cache Prof. Steve Furber (left)1 and Sophie Wilson (right)2

1.By Peter Howkins, CC BY-SA 3.0

2.By Chris Monk, CC BY-SA-2.0

https://en.wikipedia.org/wiki/Steve_Furber#/media/File:Steve_Furber.jpg
https://en.wikipedia.org/wiki/Sophie_Wilson#/media/File:Sophie_Wilson.jpg
https://en.wikipedia.org/wiki/Steve_Furber#/media/File:Steve_Furber.jpg
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Sophie_Wilson#/media/File:Sophie_Wilson.jpg
https://creativecommons.org/licenses/by-sa/2.0/

Case Study: The Armv8 Architecture

Announced 2011
2006

2004
2000

Armv1 – 1985

Armv2 – 1989

Armv3 – 1991

Armv4 – 1996

AArch64 – How Does It Differ from
Older Arm ISAs?

• Conditional execution mostly dropped

• No free shifts in arithmetic instructions

• Program counter not a part of integer register set

• No load/store multiple instructions

• Adopts a more regular instruction encoding

A64 Instructions

• 64-bit pointers and registers

• Fixed-length 32-bit instructions

• Load/store architecture

• Simple addressing modes

• 32 x 64-bit general-purpose registers (including the R31 the
zero/stack register)

• The PC cannot be specified as the destination of a data
processing instruction or load instruction.

AArch64 - Registers

In the AArch64 Execution state, each register (X0-X30) is 64-bits
wide. The increased width (vs. 32-bit) helps to reduce register
pressure in most applications.

Each 64-bit general-purpose register (X0 - X30) also has a 32-bit
form (W0 - W30).

Zero register – X31

Wn

AArch64 – Load/Store Instructions

LDR – load data from an address into a register.

STR – store data from a register to an address.

LDR X0, <addr> ; load from <addr> into X0

STR X0, <addr> ; store contents of X0 to <addr>

In these cases, X0 is a 64-bit register, so 64-bits will be loaded or stored
from/to memory.

AArch64 – Addressing Modes

Base register only: Address to load/store from is a 64-bit base register.

LDR X0, [X1] ; load from address held in X1

STR X0, [X1] ; store to address held in X1

Base plus offset: We can add an immediate or register offset (register indexed).

LDR X0, [X1, #8] ; load from address [X1 + 8 bytes]

LDR X0, [X1, #-8] ; load from address [X1 – 8 bytes]

LDR X0, [X1, X2] ; load from address [X1 + X2]

LDR X0, [X1, X2, LSL #3] ; left-shift X2 three places
before adding to X1

•

AArch64 – Addressing Modes

Pre-indexed: source register changed before load

LDR W0, [X1, #4]! ; equivalent to:

ADD X1, X1, #4

LDR W0, [X1]

Post-indexed: source register changed after load

LDR W0, [X1], #4 ; equivalent to:

LDR W0, [X1]

ADD X1, X1, #4

AArch64 – Data Processing

• Values in registers can be
processed using many
different instructions:
• Arithmetic, logic, data moves,

bit field manipulations, shifts,
conditional comparisons, etc.

• These instructions always
operate between registers,
or between a register and an
immediate.

Example loop:

MOV X0, #<loop count>

Loop:

LDR W1, [X2]

ADD W1, W1, W3

STR W1, [X2], #4

SUB X0, X0, #1

CBNZ X0, loop

AArch64 - Branching

B <offset>

PC relative branch (+/- 128MB)

BL <offset>

Similar to B, but also stores return address in LR (link
register), likely a function call

BR Xm

Absolute branch to address stored in Xm

BRL Xm

Similar to BR, but also stores return address in LR

AArch64 - Branching

RET Xm or simply RET

- Similar to BR, likely a function return

- Uses LR if register is omitted

Subroutine calls:

The Link Register (LR) stores the return address when a subroutine call is
made. This is then used at the end of our subroutine to return back to the
instruction following our subroutine call.

•

AArch64 – Conditional Execution

The A64 instruction set does not include the concept of widespread
predicated or conditional execution (as earlier Arm ISAs did).

The NZCV register holds copies of the N, Z, C, and V condition flags.

A small set of conditional data processing instructions are provided
that use the condition flags as an additional input. Only the conditional
branch is conditionally executed.

• Conditional branch

• Add/subtract with carry

• Conditional select with increment, negate, or invert

• Conditional compare (set the condition flags)

AArch64 – Conditional Branches

B.cond

Branch to label if condition code evaluates to true, e.g.,

CMP X0, #5

B.EQ label

CBZ/CBNZ – branch to label if operand register is zero (CBZ) or
not equal to zero (CBNZ)

TBZ/TBNZ – branch to label if specific bit in operand register is
set (TBZ) or clear (TBNZ)

TBZ W0, #20, label ; branch if
(W0[20]==#0b0)

AArch64- Conditional Operations

CSEL – select between two registers based on a condition

CSEL X7, X2, X0, EQ ; if (cond==true) X7=X2,

else X7=X0

There are also variants of this that cause the second source
register to be incremented, inverted, or negated.

Armv9 architecture

• Launched in 2021

• Focus on :
• security (Arm CCA, Confidential Compute Architecture)
• AI, SVE2 (Scalable Vector Extension)
• Total compute design

• In a way, you could say that Armv8 was a bit desktop-computer oriented (ARM
designs for desktop computers and servers prove that point)

• In a way, you could say that Armv9 is more leaning towards supercomputing,
architecture-wise – for SC, for HPC

• Reason is very simple – design demands and needs, as we discussed numerous
times before

• We’re going to further demonstrate this as we move towards parallelism and
memory as when we cover those topics it’s going to become even more obvious
why

Part of Arm history, visualized, part I

Part of Arm history, visualized, part II

Thank you for
your attention!

