
ADMINISTRATION OF
OPERATING SYSTEMS

PowerShell

Managing IP addresses

• New-NetIPAddress -IPAddress 192.168.1.10 -InterfaceAlias “Ethernet” -PrefixLength 24 -DefaultGateway
192.168.1.1

Cmdlet Description

New-NetIPAddress Creates a new IP address

Set-NetIPAddress Sets properties of an IP address

Get-NetIPAddress Displays properties of an IP address

Remove-NetIPAddress Deletes an IP address

Managing routing

• New-NetRoute -DestinationPrefix 0.0.0.0/24 -InterfaceAlias “Ethernet” -DefaultGateway 192.168.1.1

Cmdlet Description

New-NetRoute Creates an IP routing table entry

Set-NetRoute Sets properties of an IP routing table entry

Get-NetRoute Displays properties of an IP routing table entry

Remove-NetRoute Deletes an IP routing table entry

Find-NetRoute Identifies the best local IP address and route to reach a remote address

Managing DNS clients

• Set-DnsClient -InterfaceAlias Ethernet -ConnectionSpecificSuffix “adatum.com”

Cmdlet Description

Get-DnsClient Gets details about a network interface on a computer

Set-DnsClient Set DNS client configuration settings for a network interface

Get-Dns

ClientServerAddress

Gets the DNS server address settings for a network interface

Set-Dns

ClientServerAddress

Sets the DNS server address for a network interface

Get-DnsClient Gets details about a network interface on a computer

Managing Windows Firewall
Cmdlet Description

New-NetFirewallRule Creates a new firewall rule

Set-NetFirewallRule Sets properties for firewall rules

Get-NetFirewallRule Gets properties for firewall rules

Remove-NetFirewallRule Deletes firewall rules

Rename-NetFirewallRule Renames firewall rules

Copy-NetFirewallRule Makes a copy of firewall rules

Enable-NetFirewallRule Enables firewall rules

Disable-NetFirewallRule Disables firewall rules

Get-NetFirewallProfile Gets properties for firewall profiles

Set-NetFirewallProfile Sets properties for firewall profiles

Demonstration: Configuring network
settings

• In this demonstration, you'll learn how to:

1. Test the network connection to LON-DC1.

2. Review the network configuration for LON-CL1.

3. Change the client IP address.

4. Change the DNS server for LON-CL1.

5. Change the default gateway for LON-CL1.

6. Confirm the network configuration changes.

7. Test the effect of the changes.

Server administration
cmdlets

Group Policy management cmdlets

Cmdlet Description

New-GPO Creates a new GPO

Get-GPO Retrieves a GPO

Set-GPO Modifies properties of a GPO

Remove-GPO Deletes a GPO

Rename-GPO Renames a GPO

Backup-GPO Creates a backup of a GPO

Copy-GPO Copies a GPO from one domain to another

Restore-GPO Restores a GPO from backup files

New-GPLink Links a GPO to an AD DS container

Import-GPO Imports GPO settings from a backed-up GPO

Set-GPRegistryValue Configures one or more registry-based policy settings in a GPO

Server Manager cmdlets

• Install-WindowsFeature “nlb”

Cmdlet Description

Get-WindowsFeature Obtains and displays information about Windows Server roles,

services, and features on the local computer

Install-WindowsFeature Installs roles, services, or features

Uninstall-WindowsFeature Uninstalls roles, services, or features

Hyper-V cmdlets

Cmdlet Description

Get-VM Gets properties of a VM

Set-VM Sets properties of a VM

New-VM Creates a new VM

Start-VM Starts a VM

Stop-VM Stops a VM

Restart-VM Restarts a VM

Suspend-VM Pauses a VM

Resume-VM Resumes a paused VM

Import-VM Imports a VM from a file

Export-VM Exports a VM to a file

Checkpoint-VM Creates a checkpoint of a VM

IIS administration cmdlets

Cmdlet Description

New-IISSite Creates a new IIS website

Get-IISSite Gets properties and configuration information about an IIS website

Start-IISSite Starts an existing IIS website on the IIS server

Stop-ISSSite Stops an IIS website

New-WebApplication Creates a new web application

Remove-WebApplication Deletes a web application

New-WebAppPool Creates a new web application pool

Restart-WebAppPool Restarts a web application pool

Windows PowerShell in
Windows 10

Managing Windows 10 using PowerShell

Cmdlet Description

Get-ComputerInfo Retrieves all system and operating system properties from the computer

Get-Service Retrieves a list of all services on the computer

Get-EventLog
Retrieves events and event logs from local and remote computers (Only available
in Windows PowerShell 5.1)

Get-Process Retrieves a list of all active processes on a local or remote computer

Stop-Service Stops one or more running services

Stop-Process Stops one or more running processes

Stop-Computer Shuts down local and remote computers

Clear-EventLog
Deletes all of the entries from the specified event logs on the local computer or on
remote computers

Clear-RecycleBin Deletes the content of a computer's recycle bin

Restart-Computer Restarts the operating system on local and remote computers

Restart-Service Stops and then starts one or more services

Managing permissions with PowerShell

• To update access permissions:
1. Use Get-Acl to retrieve the existing access control list rules for the object.

2. Create a new FileSystemAccessRule to be applied to the object.

3. Add the new rule to the existing ACL permission set.

4. Use Set-Acl to apply the new ACL to the existing file or folder.

Cmdlet Description

Get-Acl
Gets objects that represent the security descriptor of a file or resource. The security
descriptor includes the access control lists (ACLs) of the resource. The ACL lists
permissions that users and groups have to access the resource.

Set-Acl
Changes the security descriptor of a specified item, such as a file, folder, or a registry
key, to match the values in a security descriptor that you supply

Understand the pipeline

What is the pipeline?

• Consider the following regarding the PowerShell pipeline:
• Windows PowerShell runs commands in a pipeline.

• Each console command line is a pipeline.

• Commands are separated by a pipe character (|).

• Commands execute from left to right.

• Output of each command is piped (passed) to the next.

• The output of the last command in the pipeline is what you notice on
your screen.

• Piped commands typically follow the pattern Get |Set, Get | Where, or
Select | Set.

What is the pipeline? (Slide 2)

• PowerShell objects can be compared to real-world items.
• For example, consider a car as an object. The car's attributes can be

described as engine, car color, car size, type, make and model. In PowerShell,
these would be known as properties.

• Properties of the object could be, in turn, objects themselves. For instan
ce, the engine property is also an
object with attributes, such as pistons, spark plugs, crankshaft, etc.

• Objects have actions, corresponding to opening or closing doors,
changing gears, accelerating, and applying brakes. In PowerShell,
these actions are called methods.

Pipeline output

• Windows PowerShell commands produce objects as their output.

• An object is like a table of data in memory.

• Allows the Get | Set pattern to work.

Discovering object members

• Object members include:
• Properties
• Methods
• Events

• Run a command that produces an object, and pipe that object to Get-
Member to review a list of members.

• Get-Member is a discovery tool that’s similar to Help. You can use it
to learn how to use the shell.

Demonstration: Reviewing object
members

• In this demonstration, you'll learn how to run commands in the pipeline and how to use Get-
Member.

Formatting pipeline output

• Use the following cmdlets to format pipeline output:
• Format-List

• Format-Table

• Format-Wide

• The -Property parameter:
• Is common to all formatting cmdlets.

• Filters output to specified property names.

• Can only specify properties that were passed to the formatting
command.

Demonstration: Formatting pipeline output

• In this demonstration, you'll learn how to format pipeline output.

Select, sort, and
measure objects

Sorting objects by a property

• Each command determines its own default sort order.

• Sort-Object can re-sort objects in the pipeline.
• Get-Service | Sort-Object Name –Descending

• Sorting enables grouping output by using:
• The -GroupBy parameter.

• The Group-Object command.

Demonstration: Sorting objects

In this demonstration, you'll learn how to sort objects by using the Sort-Object command.

Measuring objects

• Measure-Object accepts a collection of objects and counts
them.

• Add -Property to specify a single numeric property, and then
add:

• -Average to calculate an average.

• -Minimum to display the smallest value.

• -Maximum to display the largest value.

• -Sum to display the sum.

• The output is a measurement object.

Get-ChildItem -File | Measure -Property Length -Sum -Average -Minimum -Max

Demonstration: Measuring objects

• In this demonstration, you'll learn how to measure objects by using the Measure-Object command.

Selecting a subset of objects

• One of two uses for Select-Object.

• Use parameters to select the specified number of rows from the
beginning or end of the piped-in collection:

• -First for the beginning.

• -Last for the end.

• -Skip to skip a number of rows before selecting.

• -Unique to ignore duplicated rows.

• You can’t specify any criteria for choosing specific rows.

Selecting object properties

• The second use of Select-Object.

• Use the -Property parameter to specify a comma-separated list
of properties (wildcards are accepted) to include.

• You can combine the -Property parameter with -First, -Last, and
-Skip to select a subset of rows.

Demonstration: Selecting objects

• In this demonstration, you'll learn several ways to use the Select-Object command.

Filter objects out of the
pipeline

Comparison operators

Comparison type Case-insensitive operator Case-sensitive operator

Equality -eq -ceq

Inequality -ne -cne

Greater than -gt -cgt

Less than -lt -clt

Greater than or equal to -ge -cge

Less than or equal to -le -cle

Wildcard equality -like -clike

Basic filtering syntax

• The Where-Object command provides filtering.

• Examples of basic syntax include:

Get-Service |

Where Status –eq Running

Get-Process |

Where CPU –gt 20

Basic filtering syntax (Slide 2)

Limitations of the basic syntax:

• It supports only a single comparison―you can’t compare two things.

• It doesn’t support property dereferencing―you can refer to only direct properties
of the object piped into the command.

• This won’t work:

Get-Service | Where Name.Length –gt 5

Advanced filtering syntax

• Supports multiple conditions and has no restrictions on what
kinds of expressions you can use.

• Requires a filter script that contains your filtering criteria and that
evaluates to either True or False.

• Inside the filter script, use $PSItem or $_ to refer to the object
that was piped into the command.

Advanced filtering syntax (Slide 2)

Here are three examples of advanced filtering:

Get-Service | Where-Object –Filter {$PSItem.Status –eq 'Running' }

Get-Service | Where { $_.Status –eq 'Running' }

Get-Service | ? { $PSItem.Status –eq 'Running' }

Advanced filtering syntax (Slide 3)

• Use the Boolean operators -and and -or to combine multiple
comparisons into a single expression:

Get-Volume | Where-Object –Filter {

$PSItem.HealthStatus –ne 'Healthy'

-or

$PSItem.SizeRemaining –lt 100MB

}

Demonstration: Filtering

• In this demonstration, you'll learn various ways to filter objects out of the pipeline.

Optimizing filtering performance

• To improve performance, move filtering as close to the
beginning of the command line as possible.

• Some commands have parameters that can filter for you, so
whenever possible, use those parameters instead of Where-
Object.

Enumerate objects in
the pipeline

Purpose of enumeration

• To take a collection of objects and:
• Run an action on each item.

• Process them one at a time.

• Not necessary when PowerShell has a command that can
perform the action you need.

• Useful when an object has a method that does what you want,
but PowerShell doesn’t offer an equivalent command.

Basic enumeration syntax

Get-ChildItem –Path C:\Example –File |

ForEach-Object –MemberType Encrypt

Get-ChildItem –Path C:\Example –File |

ForEach Encrypt

Get-ChildItem –Path C:\Example –File |

% –MemberType Encrypt

Basic enumeration syntax (Slide 2)

Limitations:

• Can access only a single member (method or property) of
the objects that were piped into the command.

• Can’t:
• Run commands or code.

• Evaluate expressions.

• Make logical decisions.

Demonstration: Basic enumeration

• In this demonstration, you'll learn how to use the basic
enumeration syntax to enumerate several objects in a
collection.

Advanced enumeration syntax

• Allows you to perform any task by entering commands in a script
block.

• Uses $PSItem or $_ to reference the objects that were piped
into the command:

• Has additional parameters that allow you to specify actions to
take before and after the collection of objects is processed.

Get-ChildItem C:\Test –File | ForEach-Object { $PSItem.Encrypt() }

Demonstration: Advanced
enumeration
• In this demonstration, you'll learn two ways to use the advanced enumeration syntax to perform

tasks on several objects.

Send pipeline data as
output

Writing output to a file

• Out-File writes whatever is in the pipeline to a text file.

• The > and >> redirection operators are also supported.

• The text file is formatted exactly the same as the data would be
on the screen―no conversion to another form occurs.

• Unless the data has been converted to another form, the
resulting text file is usually suitable for reviewing only by a
person.

• As you start to build more complex commands, you need to
keep track of what the pipeline contains at each step.

Converting output to CSV

• The commands are:
• ConvertTo-CSV

• Export-CSV

• The commands send:
• Properties as headers.

• No type information.

• You can easily open large CSV files in Excel.

Converting output to XML

• ConvertTo-CliXml

• Export-CliXml

• Portable data format.

• Multiple value properties become individual entries.

Converting output to JSON

• The command is:
• ConvertTo-JSON

• The advantages are:
• Compactness.

• Ease of use, especially with JavaScript.

• A format like a hash table.

Converting output to HTML

• The command is:
• ConvertTo-HTML

• The command creates a table or list in HTML.

• You must pipe the output to a file.

• The parameters include:
• -Head

• -Title

• -PreContent

• -Postcontent

Demonstration: Exporting data

• In this demonstration, you'll learn different ways to convert and export data.

Additional output options

• Out-Host allows more control of on-screen output.

• Out-Printer sends output to a printer.

• Out-GridView creates an interactive, spreadsheet-like view of
the data.

Use variables

What are variables?

• A variable stores a value or object in memory.
• Some things you can do with a variable:

• Store the name of a log file that you write data to multiple times.

• Derive and store an email address based on the name of a user
account.

• Calculate and store the date representing the beginning of the most
recent 30-day period, to identify whether computer accounts have
authenticated during that time.

• You can access object properties stored in a variable.
• Variables and their values can be reviewed in the PSDrive

named Variable.

Variable naming

• Variable names:
• Should be easily understandable.

• Can contain spaces if enclosed in braces.

• Should contain only alphanumeric characters.

• Are not case-sensitive.

• A common convention for variable names uses capital
letters to separate words:

• $LogFile

• $StartDate

• $ipAddress

Assigning a value to a variable

• Use standard mathematical operators when working with variables.
• To assign a value to a variable, use the = operator:

• $num1 = 5
• $logFile = “C:\Logs\Log.txt”
• $user = Get-ADUser Administrator
• $service = Get-Service W32Time

• To display the value of a variable, enter the variable name or use
Write-Host:

• $num1
• Write-Host “The log location is $logfile”

• To clear a variable, use $null:
• $num1 = $null

Variable types

• The variable type determines the data that can be stored
in it:

• String. Stores text, including special characters.

• Int32. Stores integers without decimals.

• Double. Stores numbers with decimals.

• DateTime. Stores date and time.

• Bool. Stores true or false.

• Windows PowerShell can automatically assign the type
based on a value.

• Specify the type if data is going to be ambiguous.

Demonstration: Assigning a variable
type
• In this demonstration, you will learn how to:

1. Set the value for variables.

2. Display the contents of a variable.

3. Review the properties of a variable.

4. Review variables in memory.

5. Use the GetType method to review variable types.

6. Force variable types when assigning values.

7. Add variables together.

Manipulate variables

Identifying methods and properties

• A variable’s properties and methods are based on the
variable type.

• To identify a variable’s properties and methods, use:
• Get-Member

• Tab completion

• Documentation for properties and methods is available
in the Microsoft .NET Framework Class Library.

Working with strings

• The only property available for strings is Length.

• Some commonly used methods for strings are:
• Contains(string value)

• Insert(int startindex,string value)

• Remove(int startindex,int count)

• Replace(string value,string value)

• Split(char separator)

• ToLower()

• ToUpper()

Demonstration: Manipulating strings

• In this demonstration, you will learn how to:

1. Use the Contains method.

2. Use the Insert method.

3. Use the Replace method.

4. Use the Split method.

5. Use the ToUpper method.

6. Use the ToLower method.

Working with dates

• Commonly used DateTime properties:

– Hour
– Date
– Minute
– DayOfWeek
– Second
– Month

• Commonly used DateTime methods:
– AddDays(double value)
– ToLongDateString()
– AddHours(double value)
– ToShortDateString()
– AddMinutes(double value)
– ToLongTimeString()
– AddMonths(int value)
– ToShortTimeString()

Demonstration: Manipulating dates

• In this demonstration, you will learn how to:

1. Put output from Get-Date into a variable.

2. Review date properties.

3. Use date methods.

Manipulate arrays and
hash tables

What is an array?

• An array contains multiple values or objects.
• Values can be assigned by:

• Providing a list:
$computers = “LON-DC1”,”LON-SRV1”,”LON-CL1”

• Using command output:
$users = Get-ADUser -Filter *

• You can create an empty array:
$newUsers = @()

• You can force an array to be created when adding only a single
item:

[Array]$computers = “LON-DC1”

Working with arrays

• To display all items in an array:
$users

• To display specific items in an array by using an index number:
$users[0]

• To add items to an array:
$users = $users + $user1

$users += $user1

• To pipe the array to Get-Member to identify what you can do
with the array contents:

$files | Get-Member

Working with array lists

• Arrays are fixed-size, which limits performance and makes
removing items difficult.

• Arraylists are variable-sized.
• To create an arraylist:

• $computers = New-Object System.Collections.ArrayList
• [System.Collections.ArrayList]$computers = “LON-DC1”,”LON-

SRV1”
• To add or remove items from an arraylist:

• $computers.Add(“LON-SVR2”)
• $computers.Remove(“LON-CL1”)
• $computers.RemoveAt(1)

Demonstration: Manipulating arrays and
array lists

• In this demonstration, you will learn how to:

1. Create an array.

2. Review the contents of an array.

3. Add items to an array.

4. Create an array list.

5. Review the contents of an array list.

6. Remove an item from an array list.

What is a hash table?

• A hash table is a list of names and values.

• To refer to a value in the hash table, you provide the key:

• $servers.’LON-DC1’

• $servers[‘LON-DC1’]

Key IP address

LON-DC1 172.16.0.10

LON-SRV1 172.16.0.11

LON-SRV2 172.16.0.12

Working with hash tables

• To define a hash table:
$servers = @{“LON-DC1”=“172.16.0.10”; “LON-

SRV1”=“172.16.0.11”}

• To add an item to a hash table:
$servers.Add(“LON-SRV2”,”172.16.0.12”)

• To remove an item from a hash table:
$servers.Remove(“LON-DC1”)

• To update a value for an item in a hash table:
$servers.’LON-SRV2’=“172.16.0.100”

Demonstration: Manipulating hash
tables
• In this demonstration, you will learn how to:

1. Create a hash table.

2. Review the contents of a hash table.

3. Add an item to a hash table.

4. Remove an item from a hash table.

5. Create a hash table for a calculated property.

Introduction to scripting
with Windows PowerShell

Overview of Windows PowerShell
scripts

• Windows PowerShell scripts can be used for:

• Repetitive tasks.

• Complex tasks.

• Reporting.

• Windows PowerShell scripts:

• Use constructs such as ForEach, If, and Switch.

• Have a .ps1 file extension.

Modifying scripts

• Modifying an existing script is easier and faster than creating your
own.

• You should:

• Understand how a downloaded script works.

• Test a downloaded script in a non-production environment.

• You can get scripts from:

• The PowerShell Gallery.

• Blogs and websites.

Creating scripts

• Create a script if you can’t find one that meets your needs.

• Use code snippets from other sources when building your script.

• Develop scripts in an isolated environment that can’t affect
production.

• Build scripts incrementally for easier testing during development.

What is the PowerShellGet module?

• Windows PowerShellGet:
• Has cmdlets for accessing and publishing items in the PowerShell Gallery.

• Is included in Windows Management Framework 5.0.

• Can be downloaded for Windows PowerShell 4.0.

• Uses the NuGet provider.

• You must enable TLS 1.2 to access the PowerShell Gallery
• [Net.ServicePointManager]::SecurityProtocol =

[Net.SecurityProtocolType]::Tls12

• You can implement a private PowerShell Gallery.

• Cmdlets for finding items are:
• Find-Module

• Find-Script

Running scripts

• To enhance security, the .ps1 file extension is associated with
Notepad.

• Integration with File Explorer:
• Open

• Run with PowerShell

• Edit

• To run scripts at the Windows PowerShell prompt:
• Enter the full path - C:\Scripts\MyScript.ps1

• Enter a relative path - \Scripts\MyScript.ps1

• Reference the current directory - .\MyScript.ps1

The script execution policy

• The options for the execution policy are:
• Restricted
• AllSigned
• RemoteSigned
• Unrestricted
• ByPass

• Modify the execution policy by using:
• Set-ExecutionPolicy
• The Turn on Script Execution Group Policy setting

• Override the execution policy for a single instance:
• Powershell.exe -ExecutionPolicy Bypass

• Remove downloaded status from a script by using Unblock-File

Windows PowerShell and AppLocker

• You can use AppLocker to control the running of Windows
PowerShell scripts.

• AppLocker can limit scripts based on:

• Name.

• Location.

• Publisher (with digital signature).

• In Windows PowerShell 5.0 and newer, interactive prompts are
limited to ConstrainedLanguage mode.

Digitally signing scripts

• Use digital signatures on scripts with the AllSigned execution policy.

• Use digitally signed scripts to:
• Formalize the script approval process.

• Prevent accidental changes.

• A trusted code-signing certificate is required to add a digital signature to
a script.

• To set a digital signature:
• $cert = Get-ChildItem -Path "Cert:\CurrentUser\My" -

CodeSigningCert

• Set-AuthenticodeSignature -FilePath “C:\Scripts\MyScript.ps1” -
Certificate $cert

Demonstration: Digitally signing a
script
• In this demonstration, you will learn how to:

1. Install a code-signing certificate.

2. Digitally sign a certificate.

3. Review the digital signature.

Script constructs

Understanding ForEach loops

• Example:

ForEach ($user in $users) {
Set-ADUser $user -Department "Marketing"

}

• Commands between braces are processed once for each item in the array.

• You don’t need to know how many items are in the array.

• $user contains each array item during the loop.

• The indent is to make it easier to review.

• Variable names should be meaningful.

• The ForEach-Object cmdlet has the -Parallel parameter.

Demonstration: Using a ForEach loop

• In this demonstration, you will:

1. Review a script with a ForEach loop.

2. Run the script.

Understanding the If construct

• Use the If construct to make decisions.

• There can be zero or more ElseIf statements.

• Else is optional.

• Example:
If ($freeSpace -le 5GB) {

Write-Host "Free disk space is less than 5 GB"
} ElseIf ($freeSpace -le 10GB) {

Write-Host "Free disk space is less than 10 GB"
} Else {

Write-Host "Free disk space is more than 10 GB"
}

Demonstration: Using the If construct

• In this demonstration, you will:

1. Review a script with the If construct.

2. Test the script functionality.

Understanding the Switch construct

• The Switch construct compares a variable to a list of values.

• Example:
Switch ($choice) {

1 { Write-Host “You selected menu item 1” }
2 { Write-Host “You selected menu item 2” }
3 { Write-Host “You selected menu item 3” }
Default { Write-Host “You did not select a valid option” }

}

• You can also use wildcards and regular expressions:
• Multiple matches are possible.

Demonstration: Using the Switch
construct

• In this demonstration, you will:

1. Review a script with the Switch construct.

2. Test the script functionality.

Understanding the For construct

• The For construct is used to run a script block a specific number
of times based on the:

• Initial state.

• Condition.

• Action.

• Example:
For($i=1; $i -le 10; $i++) {

Write-Host "Creating User $i"
}

Understanding other loop constructs

• Do..While
• Loops until the condition is false
• Guaranteed to process the script block once.
• Example:

Do {
Write-Host "Code block to process"

} While ($answer -eq "go")

• Do..Until
• Loops until the condition is true.
• Guaranteed to process the script block once.
• Example:

Do {
Write-Host "Code block to process"

} Until ($answer -eq "stop")

Understanding other loop constructs
(Slide 2)

• While
• Processes the script block until the condition is false.

• Execution on the script block is not guaranteed.

• Example:

While ($answer -eq "go") {
Write-Host "Script block to process"

}

Understanding Break and Continue

• Continue stops processing the current iteration of a loop:
ForEach ($user in $users) {

If ($user.Name -eq “Administrator”) {Continue}
Write-Host “Modify user object”

}

• Break completely stops loop processing:
ForEach ($user in $users) {

$number++
Write-Host “Modify User object $number”
If ($number -ge $max) {Break}

}

Import data from files

Using Get-Content

• Get-Content retrieves content from a text file.

• Each line in the file becomes an item in an array:

$computers = Get-Content "C:\Scripts\computers.txt"

• Import multiple files by using wildcards:

Get-Content -Path "C:\Scripts*" -Include "*.txt","*.log"

• Limit the data retrieved by using the -TotalCount and -Tail
parameters.

Using Import-Csv

• The first row in the CSV file is a header row.

• Each line in the CSV file becomes an array item.

• The header row defines the property names for the items:
$users = Import-Csv C:\Scripts\Users.csv

• You can specify a custom delimiter by using the -Delimiter
parameter.

• You can specify a missing header row by using the -Header
parameter.

Using Import-Clixml

• XML can store more complex data than CSV files.

• Import-Clixml creates an array of objects:
$users = Import-Clixml C:\Scripts\Users.xml

• Use Get-Member to review object properties.

• Limit the data retrieved by using the -First and -Skip parameters.

Using ConvertFrom-Json

• JSON is:

• A lightweight data format similar to XML.

• Commonly used by web services.

• You can convert from JSON, but not import directly.
$users = Get-Content C:\Scripts\Users.json | ConvertFrom-Json

• Retrieve JSON data directly from web services by using Invoke-
RestMethod.

$users = Invoke-RestMethod "https://hr.adatum.com/api/staff"

Demonstration: Importing data

• In this demonstration, you will learn how to:

1. Use Get-Content to retrieve text data.

2. Use Import-Csv to retrieve CSV data.

3. Use Import-Clixml to retrieve XML data.

Accept user input

Identifying values that might change

• Scripts might initially have static values:

• Find users that haven’t signed in for 30 days.

• Find specific events on domain controllers.

• When scripts are reused, some of those values might need to
change.

• To simplify changing values in scripts:

• Use variables defined at the beginning of the script.

• To avoid changing scripts:

• Accept user input.

Using Read-Host

• Use Read-Host to request user input while a script is running:
$answer = Read-Host "How many days"

• To avoid displaying a colon, combine Write-Host and Read-Host:
Write-Host "How many days?" –NoNewline
$answer = Read-Host

• The -MaskInput and -AsSecureString parameters hide content as it’s
entered.

Using Get-Credential

• You can request credentials and use
them to run commands in a script:

$cred = Get-Credential

Set-ADUser –Identity $user -Department "Marketing" -
Credential $cred

• You can customize the credential prompt
by using parameters:

• -Message

• -UserName

• You can store credentials securely:
• $cred | Export-Clixml C:\cred.xml

• The SecretManagement module

Using Out-Gridview

• Out-GridView can be used as a simple menu system

$selection = $users | Out-GridView -PassThru

• For more control over the items selected, you can use the -
OutputMode parameter

Value Description

None Doesn’t allow any rows to be selected

Single Allows zero rows or one row to be selected

Multiple Allows zero rows, one row, or multiple rows to
be selected

Demonstration: Obtaining user input

• In this demonstration, you will learn how to:

1. Use Read-Host.

2. Use Get-Credential.

3. Use Out-GridView.

Passing parameters to a script

• Use a Param() block to identify the variables that will store parameter
values:

Param(
[string]$ComputerName
[int]$EventID

)

• The variable names in the Param() block define the parameter names:
.\GetEvent.ps1 -ComputerName LON-DC1 -EventID 5772

• It’s a best practice to define variable types:
• Errors are generated when data can’t be converted.
• [switch] defines parameters that are on or off.

• You can:
• Define default values for parameters: [string]$ComputerName = "LON-DC1"
• Request user input for parameters: [int]$EventID = Read-Host "Enter event ID"

Demonstration: Obtaining user input by
using parameters

• In this demonstration, you will learn how to:

1. Review a script with a param() block.

2. Pass parameters to the script.

3. Request user input when a parameter isn’t supplied.

4. Set a default value for a parameter.

Troubleshooting and
error handling

Understanding error messages

• Error messages are useful for troubleshooting.

• You might encounter error messages because:

• You made a mistake while entering text.

• You queried an object that doesn’t exist.

• You attempted to communicate with a computer that’s offline.

• Errors are stored in the $Error array

• The most recent error is stored in $Error[0].

Adding script output

• Use Write-Host to display additional information when the script is
running:

• Variable values.

• Location in the script.

• To slow down the data onscreen for easier reviewing, use:
• Start-Sleep

• Read-Host

• Comment out the Write-Host commands when not required.

• When you use CmdletBinding(), you can also use:
• Write-Verbose

• Write-Debug

Using breakpoints

• Use breakpoints to pause a script and query or modify variable values.

• Set-PSBreakPoint examples:
• Set-PSBreakPoint -Line 23 -Script “MyScript.ps1”

• Set-PSBreakPoint -Command “Set-ADUser” -Script “MyScript.ps1”

• Set-PSBreakPoint -Variable “computer” -Mode ReadWrite -Script
“MyScript.ps1”

• You use the -Action parameter to specify code to perform.

• The Windows PowerShell ISE has line-based breakpoints.

• Visual Studio Code:
• Has conditional breakpoints.

• Displays variable values in a dedicated area.

Demonstration: Troubleshooting a
script
In this demonstration, you will learn how to:

1. Run a script the generates an error.

2. Review the $Error[0] variable.

3. Clear the $Error variable.

4. Configure and use and break point.

5. Remove all breakpoints.

Understanding error actions

• $ErrorActionPreference defines what happens for non-terminating
errors:

• Continue

• SilentlyContinue

• Inquire

• Stop

• It’s preferred to modify the error action for individual commands rather
than globally:

• Get-WmiObject -Class Win32_BIOS -ComputerName LON-SVR1,LON-DC1 -
ErrorAction Stop

• Set the error action globally when it can’t be done at the command:
• For example, using methods on an object

Hvala na pažnji!

