

Development of Web Applications
Project specification

1. General Information

• The defense of the project task solution takes place during the exam periods.
• Students apply for the defense in the same way as for other exams.

• Important rules for successful submission of the project task solution:

o Submit the project task on time

o The submitted zip archive must follow the specified file naming and structure
o In your solution, fulfill at least minimum points per learning objective

o Your solution must follow the topic approved by the professor

Submitting the task on time

• 5 days before the defense is considered a deadline for submitting the project task
solution. The project task solution must be submitted no later than the deadline.

Here follows the example of the explained schedule. In the example, the defense

date is set to be 9.2.

… 3.2. 4.2. 5.2. 6.2. 7.2. 8.2. 9.2.

Deadline

23:59
 Defense

Solving project task to have at

least minimum achieved per LO

Improving solution to achieve more than

minimum

• Students who submit their project task solution after the deadline will not have their

work accepted and will not be able to attend the defense.

Submitted zip archive file naming and structure

• Submit the project task in the form of a zip archive to the email address of your

professor/assistant. RAR, 7z and other archive formats will not be accepted.

• Archive must be named in form of {surname}-{name}-{your project name}.zip

Example: Smith-John-MyProjectTask.zip
• Archive must follow the structure explained in section 3. Incorrect archive structure

will not be accepted. Please read section 3!

Minimum points per learning objective
• Correctly prepared project task solution is worth at least a minimal amount of points

per learning objective, or 10 points for each learning objective.

• Pay attention to fulfilling at least the minimum part for each LO, otherwise you will

be automatically disqualified on defense.

Improving your work and feedback

• After the deadline and before the day of the defense, students are allowed to

improve their project task and submit it again.
• Students can expect feedback on their work submitted before the deadline. In some

cases, students can get feedback after the deadline and before the defense but it’s

not guaranteed.

2. Project Task Specification

Create a single ASP.NET Core web solution that consists of two modules (projects).

When creating a solution follow the topic which you have chosen and which has been

approved by the professor.

There are two modules you need to implement:

• RESTful Service Module (Web API)

o Covers LO1 and LO2

o Used to retrieve data by JavaScript in e.g. static HTML page. Also meant to be

used for automation (for example showing or updating the data of video content
entry via API).

• MVC Module (Web Application)

o Covers LO3, LO4 and LO5
o Accessed by a user via web browser

2.1. Learning Objective 1 (RESTful Service Module, Web API)

Minimum (10 points): Create a RESTful endpoint (CRUD) for your primary entity, with
endpoints for searching and paging. Write logs while performing these operations, and

make these logs available via an additional endpoint. Desired (10 points): Secure your

endpoints using JWT token authentication and implement common authentication

functionalities.

General guides, minimum (10 points)

For your primary entity CRUD endpoints, use the name of your primary entity (e.g.

api/video). Use the JSON payload in the request body where appropriate. It is important
to handle errors and in HTTP responses return error codes 400, 404 and 500 where

needed. Support additional endpoint for search functionality, e.g. by Name or

Description or both. This endpoint must also support paging functionality using e.g. Page

and Count parameters. For search functionality use an appropriate endpoint name (e.g.
api/video/search).

For your logs implement an appropriate endpoint (e.g. api/logs/get/N - returns last N

logs, where N is passed by routing parameter). Implement endpoint api/logs/count
which returns a total number of recorded logs. For the single log, use e.g. Id,

Timestamp, Level and Message attributes. Log each CRUD action for your primary entity

record a meaningful message that identifies what happened to the entity instance.

Examples: “Video content with id=7 has been created.”, “There was a problem while

updating video content with id=7.” or “Cannot find Genre id=11.”

Make sure you include Swagger or a similar interface to be able to easily demonstrate

how your API works during the defense.

General guides, desired (10 points):

Implement the JWT token authentication for logs endpoints that you have implemented

for LO1 minimum. Implement adding a new user (e.g. endpoint api/auth/register),
retrieving the JWT token for the user (e.g. endpoint api/auth/login) and changing users’

password (e.g. endpoint api/auth/changepassword)

Make sure your Swagger interface supports authentication to be able to easily

demonstrate how your authentication works.

You can also add token authentication to other endpoints if you wish to.

2.2. Learning Objective 2 (RESTful Service Module, Web API)

Minimum (10 points): Implement the database access for your endpoints. Desired (10

points): Implement the static HTML pages that use JWT authentication, localStorage, and
existing implemented endpoints to securely display the desired number of log records.

General guides, minimum (10 points)

Use the database for saving state using RESTful endpoint (CRUD) for your primary entity
that you have implemented for LO1 minimum. Additionally, implement CRUD endpoints

for 1-to-N and M-to-N entities, also supported by the database.

Pay attention when deleting related entities, and handle eventual errors gracefully.

General guides, desired (10 points)

Implement the static HTML pages that use JWT authentication and existing endpoints to

securely display logs. Namely, these pages should be the login page and log list page.
On the log list page, the user should be able to change the displayed number of logs,

e.g. last 10, 25 or 50 logs, depending on what is selected by an appropriate dropdown.

Use localStorage to store the authentication token.

Support logout by clicking the “Logout” button.

For details on HTML pages, you can see wireframes:

• Image 1 – Static login page

• Image 2 – Static log list page

2.3. Learning Objective 3 (MVC Module, Web Application)

Minimum (10 points): For the administrator, create a secure website that implements

CRUD functionality for each of the entities. Implement meaningful and consistent
navigation. Desired (10 points): For the user, create a visually appealing website with a

landing page and a focus on the primary entity. Implement meaningful and consistent

navigation. The user must be able to self-register and log in. The user needs a page where

she/he can see the list of desired items, a way to open the desired item, and perform a
desired action like watching a movie, reserving a ticket, applying for a contest, adding a

product to a shopping basket, etc. For the administrator role, also implement viewing a list

of users with their desired actions, like watched movies, reserved tickets, contest

applications, or shopping basket content of a user.

General guides, minimum (10 points)

Implement the following for the administrator:

1. Login page: Successful login leads to the List page for the primary entity.
2. Primary entity CRUD pages: List, Add, Edit and Delete pages for the primary

entity.

On the List page, there should be a search textbox and dropdown of 1-to-N

items for filtering the list. Filtering is done when you click the Search button.

Clicking on the Previous or Next button navigates to the previous 10 items or the
next 10 items.

3. CRUD pages for other entities: List, Add, Edit and Delete pages for both the 1-

to-n entity and the m-to-n entity.

Pages must contain meaningful and consistent navigation. To be precise: all the

mentioned pages excluding the Login page must contain navigation that leads to list

pages for primary, 1-to-n, and m-to-n entities; also, each page should have a Logout

button.
Display pages in a visually appealing manner.

General guides, desired (10 points)

Implement the following for the user:

1. Landing page: Credentials don’t need to be provided to access the landing

page. The landing page visually represents your topic. CTA leads to Login page.

2. Self-register page: The user can enter registration data (username, e-mail,

password, repeat password…) and self-register.
3. Login page: Depending on the role, a successful login action leads to either e.g.

the administrator’s primary entity List page or e.g. the user's Items page.

4. Items page: Displays a list of primary entities to the user. There should be a

search textbox (for example, the name of the movie) and a 1-to-N dropdown for
filtering (for example, movie genre). Filtering is done when you click the Search

button. Clicking on each item on the items page leads to the details page (for

example, movie information). Clicking on the Previous or Next button navigates

to the previous 10 items or to the next 10 items.
5. Details page: Display the primary entity attributes. Allow the user to go back to

the items page.

6. Desired action: The user must be able to perform the desired action on that

particular item’s details page (watching a movie, reserving a ticket, applying for a

contest, adding a product to a shopping basket, etc.)

Implement the following for the administrator:

7. Support showing a list of users and their desired actions, like movies that the

user has been watching, reserved tickets, contest applications, or hers/his
shopping basket content.

Display pages in a visually appealing manner.

Support image upload for the primary entity if required by the topic.

See Addendum section for suggested schemas and wireframes for the HTML page layouts.

The schemas and wireframes are just the examples.

• Image 3 - Schema for CRUD web pages
• Image 4 - Navigation schema of web application

• Image 5 - Login page

• Image 6 - Landing page

• Image 7 - Primary entity list page (variant 1)

• Image 8 - Primary entity list page (variant 2)
• Image 9 - Primary entity details page

• Image 10 - Primary entity add/edit page

2.4. Learning Objective 4 (MVC Module, Web Application)

Minimum (10 points): Perform model validation and labeling using annotations on the

model. Desired (10 points): Implement a meaningful multi-tier solution and use

AutoMapper to simplify mapping models in that solution.

General guides, minimum (10 points)

Models must be validated: required fields, correct URLs, correct e-mail addresses, etc.
Implement validation that prevents empty input (e.g. Name, Description…). Duplicate

entity instance names are not allowed (e.g. two Genres named “Thriller” or two movies

named “Die Hard”). Visible labels must be implemented using model annotations. Entity

instance identifiers (or id’s) must not be visible anywhere on the UI.

General guides, desired (10 points)

Make use of the multi-tier concept to simplify the structure of the solution. The idea is in

the end to have Web API and MVC tiers (projects) that depend on the same common
business tier (project) and the same database tier. Note that it means that you will end

up having more than two projects in your solution.

Models: you should have a different set of models for each of the tiers (projects). For
example, a database model must not be used in the view. You should not have

navigation properties in viewmodels. Use AutoMapper to map models between tiers.

2.5. Learning Objective 5 (MVC Module, Web Application)

Minimum (10 points): For the administrator, implement a profile page to update hers/his

personal data using AJAX requests. Desired (10 points): For users, implement a profile

page to update their personal data using AJAX requests. Enable user to perform complex

paging navigation in the primary entity list page using AJAX request.

General guides, minimum (10 points)

For the administrator, implement the Profile page. Administrator should be able to
change email, first name, last name, phone number and other personal data.

You must use AJAX requests for the implementation.

General guides, desired (10 points)

For the user, implement the Profile page. Users should be able to change email

address, first name, last name, phone number and other personal data.

You must use AJAX requests for the implementation.

Implement AJAX paging in list page for primary entity. The best result would be to

display several pages before and after the current page (numbers like 5, 6, 7, 8) and

the Previous and Next buttons.

See Addendum section for wireframes for the HTML page layouts:

1. Image 11 - Profile page

3. Project Task Structure

For your project to be accepted, it has to follow the structure described here.
The structure consists of project task solution archive structure, entity structure and

database creating SQL script structure.

3.1. Project task solution archive structure

The project task solution archive must be a ZIP archive with the following folder/file

structure:

• ProjectTask
o Database

▪ Database.sql (single SQL file in the folder)

o SolutionName (folder named according to the topic)

▪ SolutionName.sln (single solution file in the folder, name it according to
the topic, e.g. VideoContentManager.sln)

▪ WebAPI (your folder with a single Web API project WebAPI.csproj and

its files)

▪ WebApp (your folder with a single Web Application project

WebApp.csproj and its files)

You can find an example of the archive structure on Infoeduka (ProjectTask-example.zip).

3.2. Entity structure

The solution of the topic that you and the professor agreed upon needs to have some

entities defined. These entities are as follows:

• Primary entity (for example, for the topic Video content management system, the main
entity would be Video)

• Additional entities

o 1-to-N entity: for example, Genre

o M-to-N entity: for example, Tag; M-to-N relation implies having both entity and
bridge tables in the database, like Tag and VideoTag

o Application user entity: for example, User

o Image entity (desired, if required by topic): for example, Image; that entity is

used to represent the image of the primary entity
o User M-to-N entity (desired): bridge table that records users desired action, like

desired action of adding a movie, reserving a ticket, applying for a contest, adding

a product to a shopping basket, etc.

Every entity must have a Name as an attribute. The primary entity must have additionally
at least 3 other attributes except Name and Id (e.g. Duration, Description, VideoUrl).

All the tables must be named the same as their entities. For example, you are not allowed

to name the table Video and use it as a Product entity (e.g. in a Web shop project).

All the table names must be singular.

3.3. Database creating SQL script structure

1. Database creation script file is a mandatory requirement. That is why the database

part of the solution must follow the database-first principle. That is in contrast to the

code-first principle, which includes migrations and which must not be used.
2. All the database table creation code must be in the Database.sql file in the archive.

3. Do not use database modifying (ALTER DATABASE), creating (CREATE

DATABASE) or switching between databases (USE) statements in the

Database.sql file.
4. Use table modifying (ALTER TABLE) and table creating (CREATE TABLE) statements in

the Database.sql file, where you need them.

5. Use statements for table record inserting, modifying, deleting and retrieving in

Database.sql file, where you need them.

Note that you will need to show a working example of your application during the
defense. This means you will have to have values for 1-to-N and M-to-N entities in the

application that has been installed on a PC in a classroom where the defense is taking

place.

You can find the example of the database script in the archive structure on Infoeduka. Note

that the database script contains example table and column names, not the real names that

you need in your project.

3.4. Important notes

1. As an archive format, use ZIP. RAR, 7z and the other archive formats files are not

supported and will not be accepted.

2. The archive must not contain bin and obj folders due to the limitations of antivirus

email filters. The same goes for other folders that contain the artifacts (for example

packages). Make sure to delete them before you create the ZIP archive. Note that

you have to close Visual Studio to avoid automatic re-creating of these folders.

If your ZIP archive is too large (> 10MB or such) or you receive an error when

submitting the archive through e-mail, you should check if your archive contains bin,

obj, packages or other such folders with artifacts.

3. Hardcoding of a connection string is forbidden. The connection string must be

loaded from the configuration (appsettings.json). Note that simply adding a connection

string to the appsettings.json file doesn't solve the issue, you need to also reference

the configuration from the code.

4. Use the specified .NET version for development. It should be the same version you

have been using in your workshops and tasks. If you use another .NET version, your

application cannot be installed and verified with an automatic check and you cannot

receive feedback before the defense.

4. Addendum: Schemas and wireframes

Image 1 – Static login page

Image 2 – Static log list page

Image 3 - Schema for CRUD web pages

Image 4 - Navigation schema of web application

Image 5 - Login page

Image 6 - Landing page

Image 7 - Primary entity list page (variant 1)

Image 8 - Primary entity list page (variant 2)

Image 9 - Primary entity details page

Image 10 - Primary entity add/edit page

Image 11 - Profile page

